Documentation

Leroy.Sublocale

@[reducible, inline]
abbrev Sublocale (E : Type u_2) [Order.Frame E] :
Type u_2
Equations
Instances For
    instance instFunLikeSublocale {E : Type u_1} [Order.Frame E] :
    Equations
    theorem Sublocale.le_iff {E : Type u_1} [Order.Frame E] (u v : Sublocale E) :
    u v ∀ (i : E), v i u i
    theorem ext {E : Type u_1} [Order.Frame E] (a b : Sublocale E) (h : ∀ (x : E), a x = b x) :
    a = b
    @[simp]
    theorem Sublocale.sSup_apply {E : Type u_1} [Order.Frame E] (s : Set (Sublocale E)) (x : E) :
    (sSup s) x = js, j x
    @[simp]
    theorem Sublocale.iSup_apply {E : Type u_1} [Order.Frame E] {ι : Type u_2} (f : ιSublocale E) (x : E) :
    (iSup f) x = ⨅ (j : ι), (f j) x
    @[simp]
    theorem Sublocale.sup_apply {E : Type u_1} [Order.Frame E] (u v : Sublocale E) (x : E) :
    (u v) x = u x v x
    @[simp]
    theorem Sublocale.inf_apply {E : Type u_1} [Order.Frame E] (u v : Sublocale E) (x : E) :
    (u v) x = jlowerBounds {u, v}, j x
    @[simp]
    theorem Sublocale.top_apply {E : Type u_1} [Order.Frame E] (x : E) :
    x = x
    @[simp]
    theorem Sublocale.bot_apply {E : Type u_1} [Order.Frame E] (x : E) :
    structure Open (E : Type u_2) [Order.Frame E] :
    Type u_2
    • element : E
    Instances For
      theorem Open.ext {E : Type u_2} {inst✝ : Order.Frame E} {x y : Open E} (element : x.element = y.element) :
      x = y
      def Open.toSublocale {E : Type u_1} [Order.Frame E] (U : Open E) :
      Equations
      • U.toSublocale = { toFun := fun (x : E) => U.element x, map_inf' := , idempotent' := , le_apply' := }
      Instances For
        instance Open.instCoe {E : Type u_1} [Order.Frame E] :
        Coe (Open E) E
        Equations
        instance Open.instCoeSublocale {E : Type u_1} [Order.Frame E] :
        Equations
        instance Open.instLE {E : Type u_1} [Order.Frame E] :
        LE (Open E)
        Equations
        theorem Open.le_def {E : Type u_1} [Order.Frame E] {U V : Open E} :
        theorem Open.lt_def {E : Type u_1} [Order.Frame E] {U V : Open E} :
        @[simp]
        @[simp]
        theorem Open.sSup_def {E : Type u_1} [Order.Frame E] (s : Set (Open E)) :
        sSup s = { element := sSup (element '' s) }
        Equations
        theorem Open.sup_def {E : Type u_1} [Order.Frame E] (u v : Open E) :
        u v = { element := u.element v.element }
        theorem Open.inf_def {E : Type u_1} [Order.Frame E] (u v : Open E) :
        u v = { element := u.element v.element }
        @[simp]
        theorem Open.mk_element {E : Type u_1} [Order.Frame E] (U : Open E) :
        { element := U.element } = U
        @[simp]
        theorem Open.toSublocale_apply {E : Type u_1} [Order.Frame E] (U : Open E) (x : E) :
        @[simp]
        theorem Open.apply_self {E : Type u_1} [Order.Frame E] (U : Open E) :
        theorem Open.le_iff {E : Type u_1} [Order.Frame E] {U V : Open E} :
        theorem Open.eq_iff {E : Type u_1} [Order.Frame E] {U V : Open E} :
        @[simp]
        theorem Open.Sublocale.coe_mk {E : Type u_1} [Order.Frame E] (f : InfHom E E) (h2 : ∀ (x : E), f.toFun (f.toFun x) f.toFun x) (h3 : ∀ (x : E), x f.toFun x) :
        { toFun := { toInfHom := f, idempotent' := h2, le_apply' := h3 }, map_inf' := } = f
        theorem Open.preserves_iSup {E : Type u_1} [Order.Frame E] {ι : Sort u_2} (f : ιOpen E) :
        (iSup f).toSublocale = ⨆ (i : ι), (f i).toSublocale
        def complement {E : Type u_1} [Order.Frame E] (U : Open E) :
        Equations
        • complement U = { toFun := fun (x : E) => U.element x, map_inf' := , idempotent' := , le_apply' := }
        Instances For
          structure Closed (E : Type u_2) [Order.Frame E] :
          Type u_2
          • element : E
          Instances For
            theorem Closed.ext {E : Type u_2} {inst✝ : Order.Frame E} {x y : Closed E} (element : x.element = y.element) :
            x = y
            def Closed.toSublocale {E : Type u_1} [Order.Frame E] (c : Closed E) :
            Equations
            Instances For
              theorem Closed.toSublocale_apply {E : Type u_1} [Order.Frame E] (c : Closed E) (x : E) :
              Equations
              instance Closed.instLE {E : Type u_1} [Order.Frame E] :
              Equations
              theorem Closed.le_def {E : Type u_1} [Order.Frame E] (x y : Closed E) :
              theorem Closed.le_iff {E : Type u_1} [Order.Frame E] (x y : Closed E) :
              def Closed.compl {E : Type u_1} [Order.Frame E] (c : Closed E) :
              Equations
              Instances For
                @[simp]
                theorem Closed.element_compl {E : Type u_1} [Order.Frame E] (c : Closed E) :
                c.compl.element = { element := c.element }.element
                instance Closed.instInfSet {E : Type u_1} [Order.Frame E] :
                Equations
                theorem Closed.sInf_def {E : Type u_1} [Order.Frame E] (s : Set (Closed E)) :
                sInf s = { element := sSup (element '' s) }
                Equations
                def Closed.inf_def {E : Type u_1} [Order.Frame E] (x y : Closed E) :
                x y = { element := x.element y.element }
                Equations
                • =
                Instances For
                  Equations
                  • =
                  Instances For
                    def Open.compl {E : Type u_1} [Order.Frame E] (U : Open E) :
                    Equations
                    Instances For
                      @[simp]
                      theorem Open.compl_element {E : Type u_1} [Order.Frame E] (U : Open E) :
                      theorem Open.compl_le_compl {E : Type u_1} [Order.Frame E] (U V : Open E) (h : U V) :
                      theorem Closed.compl_le_compl {E : Type u_1} [Order.Frame E] (c d : Closed E) (h : c d) :