Equations
- instFunLikeSublocale = { coe := fun (x : Sublocale E) => x.toFun, coe_injective' := ⋯ }
@[simp]
@[simp]
theorem
Sublocale.iSup_apply
{E : Type u_1}
[Order.Frame E]
{ι : Type u_2}
(f : ι → Sublocale E)
(x : E)
:
@[simp]
@[simp]
Equations
- U.toSublocale = { toFun := fun (x : E) => U.element ⇨ x, map_inf' := ⋯, idempotent' := ⋯, le_apply' := ⋯ }
Instances For
Equations
- Open.instCoe = { coe := fun (x : Open E) => x.element }
Equations
- Open.instCoeSublocale = { coe := fun (x : Open E) => x.toSublocale }
Equations
Equations
Equations
Equations
- Open.instSemilatticeInf = SemilatticeInf.mk (fun (x y : Open E) => { element := x.element ⊓ y.element }) ⋯ ⋯ ⋯
Equations
- Open.instCompleteLattice = CompleteLattice.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[simp]
@[simp]
@[simp]
Equations
- complement U = { toFun := fun (x : E) => U.element ⊔ x, map_inf' := ⋯, idempotent' := ⋯, le_apply' := ⋯ }
Instances For
theorem
Closed.ext
{E : Type u_2}
{inst✝ : Order.Frame E}
{x y : Closed E}
(element : x.element = y.element)
:
Equations
- c.toSublocale = complement { element := c.element }
Instances For
Equations
- Closed.instCoeSublocale = { coe := fun (x : Closed E) => x.toSublocale }
Instances For
@[simp]
Equations
- Closed.instInfSet = { sInf := fun (x : Set (Closed E)) => { element := sSup (Closed.element '' x) } }
Equations
Equations
- Closed.instSemilatticeInf = SemilatticeInf.mk (fun (x y : Closed E) => { element := x.element ⊔ y.element }) ⋯ ⋯ ⋯
Equations
- ⋯ = ⋯
Instances For
Instances For
@[simp]
theorem
Closed_compl_le_Open_compl
{E : Type u_1}
[Order.Frame E]
(U : Open E)
(c : Closed E)
(h : U.toSublocale ≤ c.toSublocale)
: