Proof that the equality of a compare function corresponds to propositional equality.
- eq_of_cmp : ∀ {a a' : α}, cmp a a' = Ordering.eq → a = a'
Instances
Proof that the equality of a compare function corresponds to propositional equality and vice versa.
- eq_of_cmp : ∀ {a a' : α}, cmp a a' = Ordering.eq → a = a'
- cmp_rfl : ∀ {a : α}, cmp a a = Ordering.eq
Instances
@[simp]
theorem
Lake.cmp_iff_eq
{α : Type u_1}
{cmp : α → α → Ordering}
{a : α}
{a' : α}
[Lake.LawfulCmpEq α cmp]
:
cmp a a' = Ordering.eq ↔ a = a'
Proof that the equality of a compare function corresponds to propositional equality with respect to a given function.
- eq_of_cmp_wrt : ∀ {a a' : α}, cmp a a' = Ordering.eq → f a = f a'
Instances
instance
Lake.instEqOfCmpWrtType
{α : Type u_1}
{cmp : α → α → Ordering}
:
Lake.EqOfCmpWrt α (fun (x : α) => α) cmp
Equations
- Lake.instEqOfCmpWrtType = { eq_of_cmp_wrt := ⋯ }
instance
Lake.instEqOfCmpWrt
{α : Type u_1}
{cmp : α → α → Ordering}
:
{β : Type u_2} → {f : α → β} → [inst : Lake.EqOfCmp α cmp] → Lake.EqOfCmpWrt α f cmp
Equations
- Lake.instEqOfCmpWrt = { eq_of_cmp_wrt := ⋯ }
instance
Lake.instEqOfCmp
{α : Type u_1}
{cmp : α → α → Ordering}
[Lake.EqOfCmpWrt α (fun (a : α) => a) cmp]
:
Lake.EqOfCmp α cmp
Equations
- Lake.instEqOfCmp = { eq_of_cmp := ⋯ }
theorem
Lake.eq_of_compareOfLessAndEq
{α : Type u_1}
[LT α]
[DecidableEq α]
{a : α}
{a' : α}
[Decidable (a < a')]
(h : compareOfLessAndEq a a' = Ordering.eq)
:
a = a'
theorem
Lake.compareOfLessAndEq_rfl
{α : Type u_1}
[LT α]
[DecidableEq α]
{a : α}
[Decidable (a < a)]
(lt_irrefl : ¬a < a)
:
theorem
Lake.Fin.eq_of_compare
{m : Nat}
{n : Fin m}
{n' : Fin m}
(h : compare n n' = Ordering.eq)
:
n = n'
Equations
- Lake.instLawfulCmpEqFinCompareInstOrdFin = Lake.LawfulCmpEq.mk ⋯
@[macro_inline]
Equations
- Lake.Option.compareWith cmp x✝ x = match x✝, x with | none, none => Ordering.eq | none, some val => Ordering.lt | some val, none => Ordering.gt | some x, some y => cmp x y
Instances For
instance
Lake.instEqOfCmpOptionCompareWith
{α : Type u_1}
{cmp : α → α → Ordering}
[Lake.EqOfCmp α cmp]
:
Lake.EqOfCmp (Option α) (Lake.Option.compareWith cmp)
Equations
- Lake.instEqOfCmpOptionCompareWith = { eq_of_cmp := ⋯ }
instance
Lake.instLawfulCmpEqOptionCompareWith
{α : Type u_1}
{cmp : α → α → Ordering}
[Lake.LawfulCmpEq α cmp]
:
Lake.LawfulCmpEq (Option α) (Lake.Option.compareWith cmp)
Equations
- Lake.instLawfulCmpEqOptionCompareWith = Lake.LawfulCmpEq.mk ⋯
def
Lake.Prod.compareWith
{α : Type u_1}
{β : Type u_2}
(cmpA : α → α → Ordering)
(cmpB : β → β → Ordering)
:
Equations
- Lake.Prod.compareWith cmpA cmpB x✝ x = match x✝ with | (a, b) => match x with | (a', b') => match cmpA a a' with | Ordering.eq => cmpB b b' | ord => ord
Instances For
instance
Lake.instEqOfCmpProdCompareWith
{α : Type u_1}
{cmpA : α → α → Ordering}
{β : Type u_2}
{cmpB : β → β → Ordering}
[Lake.EqOfCmp α cmpA]
[Lake.EqOfCmp β cmpB]
:
Lake.EqOfCmp (α × β) (Lake.Prod.compareWith cmpA cmpB)
Equations
- Lake.instEqOfCmpProdCompareWith = { eq_of_cmp := ⋯ }
instance
Lake.instLawfulCmpEqProdCompareWith
{α : Type u_1}
{cmpA : α → α → Ordering}
{β : Type u_2}
{cmpB : β → β → Ordering}
[Lake.LawfulCmpEq α cmpA]
[Lake.LawfulCmpEq β cmpB]
:
Lake.LawfulCmpEq (α × β) (Lake.Prod.compareWith cmpA cmpB)
Equations
- Lake.instLawfulCmpEqProdCompareWith = Lake.LawfulCmpEq.mk ⋯