Equations
- Lean.RBTree α cmp = Lean.RBMap α Unit cmp
Instances For
instance
Lean.instInhabitedRBTree
{α : Type u_1}
{p : α → α → Ordering}
:
Inhabited (Lean.RBTree α p)
Equations
- Lean.instInhabitedRBTree = { default := Lean.RBMap.empty }
instance
Lean.instEmptyCollectionRBTree
(α : Type u)
(cmp : α → α → Ordering)
:
EmptyCollection (Lean.RBTree α cmp)
Equations
- Lean.instEmptyCollectionRBTree α cmp = { emptyCollection := Lean.mkRBTree α cmp }
@[inline]
def
Lean.RBTree.depth
{α : Type u}
{cmp : α → α → Ordering}
(f : Nat → Nat → Nat)
(t : Lean.RBTree α cmp)
:
Equations
- Lean.RBTree.depth f t = Lean.RBMap.depth f t
Instances For
@[inline]
def
Lean.RBTree.fold
{α : Type u}
{β : Type v}
{cmp : α → α → Ordering}
(f : β → α → β)
(init : β)
(t : Lean.RBTree α cmp)
:
β
Equations
- Lean.RBTree.fold f init t = Lean.RBMap.fold (fun (r : β) (a : α) (x : Unit) => f r a) init t
Instances For
@[inline]
def
Lean.RBTree.revFold
{α : Type u}
{β : Type v}
{cmp : α → α → Ordering}
(f : β → α → β)
(init : β)
(t : Lean.RBTree α cmp)
:
β
Equations
- Lean.RBTree.revFold f init t = Lean.RBMap.revFold (fun (r : β) (a : α) (x : Unit) => f r a) init t
Instances For
@[inline]
def
Lean.RBTree.foldM
{α : Type u}
{β : Type v}
{cmp : α → α → Ordering}
{m : Type v → Type w}
[Monad m]
(f : β → α → m β)
(init : β)
(t : Lean.RBTree α cmp)
:
m β
Equations
- Lean.RBTree.foldM f init t = Lean.RBMap.foldM (fun (r : β) (a : α) (x : Unit) => f r a) init t
Instances For
@[inline]
def
Lean.RBTree.forM
{α : Type u}
{cmp : α → α → Ordering}
{m : Type v → Type w}
[Monad m]
(f : α → m PUnit)
(t : Lean.RBTree α cmp)
:
m PUnit
Equations
- Lean.RBTree.forM f t = Lean.RBTree.foldM (fun (x : PUnit) (a : α) => f a) PUnit.unit t
Instances For
@[inline]
def
Lean.RBTree.forIn
{α : Type u}
{cmp : α → α → Ordering}
{m : Type u_1 → Type u_2}
{σ : Type u_1}
[Monad m]
(t : Lean.RBTree α cmp)
(init : σ)
(f : α → σ → m (ForInStep σ))
:
m σ
Equations
- Lean.RBTree.forIn t init f = Lean.RBNode.forIn t.val init fun (a : α) (x : Unit) (acc : σ) => f a acc
Instances For
@[inline]
Equations
Instances For
@[specialize #[]]
Equations
- Lean.RBTree.toList t = Lean.RBTree.revFold (fun (as : List α) (a : α) => a :: as) [] t
Instances For
@[specialize #[]]
Equations
- Lean.RBTree.toArray t = Lean.RBTree.fold (fun (as : Array α) (a : α) => Array.push as a) #[] t
Instances For
@[inline]
Equations
- Lean.RBTree.min t = match Lean.RBMap.min t with | some (a, snd) => some a | none => none
Instances For
@[inline]
Equations
- Lean.RBTree.max t = match Lean.RBMap.max t with | some (a, snd) => some a | none => none
Instances For
instance
Lean.RBTree.instReprRBTree
{α : Type u}
{cmp : α → α → Ordering}
[Repr α]
:
Repr (Lean.RBTree α cmp)
Equations
- One or more equations did not get rendered due to their size.
@[inline]
def
Lean.RBTree.insert
{α : Type u}
{cmp : α → α → Ordering}
(t : Lean.RBTree α cmp)
(a : α)
:
Lean.RBTree α cmp
Equations
- Lean.RBTree.insert t a = Lean.RBMap.insert t a ()
Instances For
@[inline]
def
Lean.RBTree.erase
{α : Type u}
{cmp : α → α → Ordering}
(t : Lean.RBTree α cmp)
(a : α)
:
Lean.RBTree α cmp
Equations
- Lean.RBTree.erase t a = Lean.RBMap.erase t a
Instances For
@[specialize #[]]
Equations
- Lean.RBTree.ofList [] = Lean.mkRBTree α cmp
- Lean.RBTree.ofList (x_1 :: xs) = Lean.RBTree.insert (Lean.RBTree.ofList xs) x_1
Instances For
@[inline]
def
Lean.RBTree.find?
{α : Type u}
{cmp : α → α → Ordering}
(t : Lean.RBTree α cmp)
(a : α)
:
Option α
Equations
- Lean.RBTree.find? t a = match Lean.RBMap.findCore? t a with | some { fst := a, snd := snd } => some a | none => none
Instances For
@[inline]
Equations
- Lean.RBTree.contains t a = Option.isSome (Lean.RBTree.find? t a)
Instances For
Equations
- Lean.RBTree.fromList l cmp = List.foldl Lean.RBTree.insert (Lean.mkRBTree α cmp) l
Instances For
Equations
- Lean.RBTree.fromArray l cmp = Array.foldl Lean.RBTree.insert (Lean.mkRBTree α cmp) l 0
Instances For
@[inline]
Equations
- Lean.RBTree.all t p = Lean.RBMap.all t fun (a : α) (x : Unit) => p a
Instances For
@[inline]
Equations
- Lean.RBTree.any t p = Lean.RBMap.any t fun (a : α) (x : Unit) => p a
Instances For
def
Lean.RBTree.subset
{α : Type u}
{cmp : α → α → Ordering}
(t₁ : Lean.RBTree α cmp)
(t₂ : Lean.RBTree α cmp)
:
Equations
- Lean.RBTree.subset t₁ t₂ = Lean.RBTree.all t₁ fun (a : α) => Option.toBool (Lean.RBTree.find? t₂ a)
Instances For
def
Lean.RBTree.seteq
{α : Type u}
{cmp : α → α → Ordering}
(t₁ : Lean.RBTree α cmp)
(t₂ : Lean.RBTree α cmp)
:
Equations
- Lean.RBTree.seteq t₁ t₂ = (Lean.RBTree.subset t₁ t₂ && Lean.RBTree.subset t₂ t₁)
Instances For
def
Lean.RBTree.union
{α : Type u}
{cmp : α → α → Ordering}
(t₁ : Lean.RBTree α cmp)
(t₂ : Lean.RBTree α cmp)
:
Lean.RBTree α cmp
Equations
- Lean.RBTree.union t₁ t₂ = if Lean.RBTree.isEmpty t₁ = true then t₂ else Lean.RBTree.fold Lean.RBTree.insert t₁ t₂
Instances For
def
Lean.RBTree.diff
{α : Type u}
{cmp : α → α → Ordering}
(t₁ : Lean.RBTree α cmp)
(t₂ : Lean.RBTree α cmp)
:
Lean.RBTree α cmp
Equations
- Lean.RBTree.diff t₁ t₂ = Lean.RBTree.fold Lean.RBTree.erase t₁ t₂
Instances For
Equations
- Lean.rbtreeOf l cmp = Lean.RBTree.fromList l cmp