Field structure on the multiplicative/additive opposite #
Equations
- AddOpposite.ratCast α = { ratCast := fun (n : ℚ) => AddOpposite.op ↑n }
Equations
- MulOpposite.ratCast α = { ratCast := fun (n : ℚ) => MulOpposite.op ↑n }
@[simp]
@[simp]
@[simp]
@[simp]
Equations
- MulOpposite.instDivisionSemiring α = let __src := MulOpposite.instGroupWithZero α; let __src_1 := MulOpposite.instSemiring α; DivisionSemiring.mk ⋯ GroupWithZero.zpow ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- One or more equations did not get rendered due to their size.
Equations
- MulOpposite.instSemifield α = let __src := MulOpposite.instDivisionSemiring α; let __src_1 := MulOpposite.instCommSemiring α; Semifield.mk ⋯ DivisionSemiring.zpow ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- MulOpposite.instField α = let __src := MulOpposite.instDivisionRing α; let __src_1 := MulOpposite.instCommRing α; Field.mk ⋯ DivisionRing.zpow ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ DivisionRing.qsmul ⋯
Equations
- AddOpposite.instDivisionSemiring = let __src := AddOpposite.instGroupWithZero α; let __src_1 := AddOpposite.instSemiring α; DivisionSemiring.mk ⋯ GroupWithZero.zpow ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- One or more equations did not get rendered due to their size.
Equations
- AddOpposite.instSemifield = let __src := AddOpposite.instDivisionSemiring; let __src_1 := AddOpposite.instCommSemiring α; Semifield.mk ⋯ DivisionSemiring.zpow ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- AddOpposite.instField = let __src := AddOpposite.instDivisionRing; let __src_1 := AddOpposite.instCommRing α; Field.mk ⋯ DivisionRing.zpow ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ DivisionRing.qsmul ⋯