Additional lemmas about commuting pairs of elements in monoids #
theorem
AddCommute.neg_neg
{G : Type u_1}
[SubtractionMonoid G]
{a : G}
{b : G}
:
AddCommute a b → AddCommute (-a) (-b)
@[simp]
theorem
AddCommute.neg_neg_iff
{G : Type u_1}
[SubtractionMonoid G]
{a : G}
{b : G}
:
AddCommute (-a) (-b) ↔ AddCommute a b
@[simp]
theorem
AddCommute.sub_add_sub_comm
{G : Type u_1}
[SubtractionMonoid G]
{a : G}
{b : G}
{c : G}
{d : G}
(hbd : AddCommute b d)
(hbc : AddCommute (-b) c)
:
theorem
AddCommute.add_sub_add_comm
{G : Type u_1}
[SubtractionMonoid G]
{a : G}
{b : G}
{c : G}
{d : G}
(hcd : AddCommute c d)
(hbc : AddCommute b (-c))
:
theorem
AddCommute.sub_sub_sub_comm
{G : Type u_1}
[SubtractionMonoid G]
{a : G}
{b : G}
{c : G}
{d : G}
(hbc : AddCommute b c)
(hbd : AddCommute (-b) d)
(hcd : AddCommute (-c) d)
:
@[simp]
theorem
AddCommute.neg_left_iff
{G : Type u_1}
[AddGroup G]
{a : G}
{b : G}
:
AddCommute (-a) b ↔ AddCommute a b
Alias of the reverse direction of Commute.inv_left_iff
.
theorem
AddCommute.neg_left
{G : Type u_1}
[AddGroup G]
{a : G}
{b : G}
:
AddCommute a b → AddCommute (-a) b
@[simp]
theorem
AddCommute.neg_right_iff
{G : Type u_1}
[AddGroup G]
{a : G}
{b : G}
:
AddCommute a (-b) ↔ AddCommute a b
Alias of the reverse direction of Commute.inv_right_iff
.
theorem
AddCommute.neg_right
{G : Type u_1}
[AddGroup G]
{a : G}
{b : G}
:
AddCommute a b → AddCommute a (-b)
theorem
AddCommute.neg_add_cancel
{G : Type u_1}
[AddGroup G]
{a : G}
{b : G}
(h : AddCommute a b)
:
theorem
AddCommute.neg_add_cancel_assoc
{G : Type u_1}
[AddGroup G]
{a : G}
{b : G}
(h : AddCommute a b)
:
@[simp]
theorem
AddCommute.conj_iff
{G : Type u_1}
[AddGroup G]
{a : G}
{b : G}
(h : G)
:
AddCommute (h + a + -h) (h + b + -h) ↔ AddCommute a b
theorem
AddCommute.conj
{G : Type u_1}
[AddGroup G]
{a : G}
{b : G}
(comm : AddCommute a b)
(h : G)
: