Documentation

Mathlib.Algebra.GroupPower.Hom

Power as a monoid hom #

theorem nsmulAddMonoidHom.proof_1 {α : Type u_1} [AddCommMonoid α] (n : ) :
n 0 = 0
def nsmulAddMonoidHom {α : Type u_1} [AddCommMonoid α] (n : ) :
α →+ α

Multiplication by a natural n on a commutative additive monoid, considered as a morphism of additive monoids.

Equations
  • nsmulAddMonoidHom n = { toZeroHom := { toFun := fun (x : α) => n x, map_zero' := }, map_add' := }
Instances For
    @[simp]
    theorem powMonoidHom_apply {α : Type u_1} [CommMonoid α] (n : ) :
    ∀ (x : α), (powMonoidHom n) x = x ^ n
    @[simp]
    theorem nsmulAddMonoidHom_apply {α : Type u_1} [AddCommMonoid α] (n : ) :
    ∀ (x : α), (nsmulAddMonoidHom n) x = n x
    def powMonoidHom {α : Type u_1} [CommMonoid α] (n : ) :
    α →* α

    The nth power map on a commutative monoid for a natural n, considered as a morphism of monoids.

    Equations
    • powMonoidHom n = { toOneHom := { toFun := fun (x : α) => x ^ n, map_one' := }, map_mul' := }
    Instances For
      def zsmulAddGroupHom {α : Type u_1} [SubtractionCommMonoid α] (n : ) :
      α →+ α

      Multiplication by an integer n on a commutative additive group, considered as an additive group homomorphism.

      Equations
      • zsmulAddGroupHom n = { toZeroHom := { toFun := fun (x : α) => n x, map_zero' := }, map_add' := }
      Instances For
        theorem zsmulAddGroupHom.proof_1 {α : Type u_1} [SubtractionCommMonoid α] (n : ) :
        n 0 = 0
        @[simp]
        theorem zsmulAddGroupHom_apply {α : Type u_1} [SubtractionCommMonoid α] (n : ) :
        ∀ (x : α), (zsmulAddGroupHom n) x = n x
        @[simp]
        theorem zpowGroupHom_apply {α : Type u_1} [DivisionCommMonoid α] (n : ) :
        ∀ (x : α), (zpowGroupHom n) x = x ^ n
        def zpowGroupHom {α : Type u_1} [DivisionCommMonoid α] (n : ) :
        α →* α

        The n-th power map (for an integer n) on a commutative group, considered as a group homomorphism.

        Equations
        • zpowGroupHom n = { toOneHom := { toFun := fun (x : α) => x ^ n, map_one' := }, map_mul' := }
        Instances For