Powers of elements of groups with an adjoined zero element #
In this file we define integer power functions for groups with an adjoined zero element. This generalises the integer power function on a division ring.
theorem
SemiconjBy.zpow_right₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a : G₀}
{x : G₀}
{y : G₀}
(h : SemiconjBy a x y)
(m : ℤ)
:
SemiconjBy a (x ^ m) (y ^ m)
theorem
Commute.zpow_right₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a : G₀}
{b : G₀}
(h : Commute a b)
(m : ℤ)
:
theorem
Commute.zpow_left₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a : G₀}
{b : G₀}
(h : Commute a b)
(m : ℤ)
:
theorem
Commute.zpow_zpow₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a : G₀}
{b : G₀}
(h : Commute a b)
(m : ℤ)
(n : ℤ)
: