Multiplication by a nonzero element in a GroupWithZero
is a permutation. #
@[simp]
theorem
Equiv.mulLeft₀_apply
{G : Type u_1}
[GroupWithZero G]
(a : G)
(ha : a ≠ 0)
:
⇑(Equiv.mulLeft₀ a ha) = fun (x : G) => a * x
@[simp]
theorem
Equiv.mulLeft₀_symm_apply
{G : Type u_1}
[GroupWithZero G]
(a : G)
(ha : a ≠ 0)
:
⇑(Equiv.mulLeft₀ a ha).symm = fun (x : G) => a⁻¹ * x
Left multiplication by a nonzero element in a GroupWithZero
is a permutation of the
underlying type.
Equations
- Equiv.mulLeft₀ a ha = Units.mulLeft (Units.mk0 a ha)
Instances For
theorem
mulLeft_bijective₀
{G : Type u_1}
[GroupWithZero G]
(a : G)
(ha : a ≠ 0)
:
Function.Bijective fun (x : G) => a * x
@[simp]
theorem
Equiv.mulRight₀_apply
{G : Type u_1}
[GroupWithZero G]
(a : G)
(ha : a ≠ 0)
:
⇑(Equiv.mulRight₀ a ha) = fun (x : G) => x * a
@[simp]
theorem
Equiv.mulRight₀_symm_apply
{G : Type u_1}
[GroupWithZero G]
(a : G)
(ha : a ≠ 0)
:
⇑(Equiv.mulRight₀ a ha).symm = fun (x : G) => x * a⁻¹
Right multiplication by a nonzero element in a GroupWithZero
is a permutation of the
underlying type.
Equations
- Equiv.mulRight₀ a ha = Units.mulRight (Units.mk0 a ha)
Instances For
theorem
mulRight_bijective₀
{G : Type u_1}
[GroupWithZero G]
(a : G)
(ha : a ≠ 0)
:
Function.Bijective fun (x : G) => x * a