Prod instances for module and multiplicative actions #
This file defines instances for binary product of modules
instance
Prod.smulWithZero
{R : Type u_1}
{M : Type u_3}
{N : Type u_4}
[Zero R]
[Zero M]
[Zero N]
[SMulWithZero R M]
[SMulWithZero R N]
:
SMulWithZero R (M × N)
Equations
- Prod.smulWithZero = let __src := Prod.smul; SMulWithZero.mk ⋯
instance
Prod.mulActionWithZero
{R : Type u_1}
{M : Type u_3}
{N : Type u_4}
[MonoidWithZero R]
[Zero M]
[Zero N]
[MulActionWithZero R M]
[MulActionWithZero R N]
:
MulActionWithZero R (M × N)
Equations
- Prod.mulActionWithZero = let __src := Prod.mulAction; MulActionWithZero.mk ⋯ ⋯
instance
Prod.instModule
{R : Type u_1}
{M : Type u_3}
{N : Type u_4}
[Semiring R]
[AddCommMonoid M]
[AddCommMonoid N]
[Module R M]
[Module R N]
:
instance
Prod.noZeroSMulDivisors
{R : Type u_1}
{M : Type u_3}
{N : Type u_4}
{r : Semiring R}
[AddCommMonoid M]
[AddCommMonoid N]
[Module R M]
[Module R N]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
:
NoZeroSMulDivisors R (M × N)
Equations
- ⋯ = ⋯