Documentation

Mathlib.Algebra.Order.Field.Defs

Linear ordered (semi)fields #

A linear ordered (semi)field is a (semi)field equipped with a linear order such that

Main Definitions #

A linear ordered semifield is a field with a linear order respecting the operations.

Instances
    class LinearOrderedField (α : Type u_2) extends LinearOrderedCommRing , Inv , Div , RatCast :
    Type u_2

    A linear ordered field is a field with a linear order respecting the operations.

    Instances
      Equations
      • LinearOrderedField.toLinearOrderedSemifield = let __src := LinearOrderedRing.toLinearOrderedSemiring; let __src_1 := inst; LinearOrderedSemifield.mk LinearOrderedField.zpow
      @[simp]
      theorem inv_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      0 < a⁻¹ 0 < a
      theorem inv_pos_of_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      0 < a0 < a⁻¹

      Alias of the reverse direction of inv_pos.

      @[simp]
      theorem inv_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      0 a⁻¹ 0 a
      theorem inv_nonneg_of_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      0 a0 a⁻¹

      Alias of the reverse direction of inv_nonneg.

      @[simp]
      theorem inv_lt_zero {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      a⁻¹ < 0 a < 0
      @[simp]
      theorem inv_nonpos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      a⁻¹ 0 a 0
      theorem one_div_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      0 < 1 / a 0 < a
      theorem one_div_neg {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      1 / a < 0 a < 0
      theorem one_div_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      0 1 / a 0 a
      theorem one_div_nonpos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
      1 / a 0 a 0
      theorem div_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : 0 < a) (hb : 0 < b) :
      0 < a / b
      theorem div_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : 0 a) (hb : 0 b) :
      0 a / b
      theorem div_nonpos_of_nonpos_of_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : a 0) (hb : 0 b) :
      a / b 0
      theorem div_nonpos_of_nonneg_of_nonpos {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : 0 a) (hb : b 0) :
      a / b 0
      theorem zpow_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} (ha : 0 a) (n : ) :
      0 a ^ n
      theorem zpow_pos_of_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} (ha : 0 < a) (n : ) :
      0 < a ^ n