Units in ordered monoids #
Equations
- AddUnits.instPreorderAddUnits = Preorder.lift AddUnits.val
Equations
- Units.instPreorderUnits = Preorder.lift Units.val
instance
AddUnits.instPartialOrderAddUnits
{α : Type u_1}
[AddMonoid α]
[PartialOrder α]
:
PartialOrder (AddUnits α)
Equations
- AddUnits.instPartialOrderAddUnits = PartialOrder.lift AddUnits.val ⋯
Equations
- Units.instPartialOrderUnits = PartialOrder.lift Units.val ⋯
instance
AddUnits.instLinearOrderAddUnits
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
:
LinearOrder (AddUnits α)
Equations
- AddUnits.instLinearOrderAddUnits = LinearOrder.lift' AddUnits.val ⋯
Equations
- Units.instLinearOrderUnits = LinearOrder.lift' Units.val ⋯
val : add_units α → α
as an order embedding.
Equations
- AddUnits.orderEmbeddingVal = { toEmbedding := { toFun := AddUnits.val, inj' := ⋯ }, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
AddUnits.orderEmbeddingVal_apply
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
:
⇑AddUnits.orderEmbeddingVal = AddUnits.val
@[simp]
theorem
Units.orderEmbeddingVal_apply
{α : Type u_1}
[Monoid α]
[LinearOrder α]
:
⇑Units.orderEmbeddingVal = Units.val
val : αˣ → α
as an order embedding.
Equations
- Units.orderEmbeddingVal = { toEmbedding := { toFun := Units.val, inj' := ⋯ }, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
AddUnits.max_val
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
{a : AddUnits α}
{b : AddUnits α}
:
@[simp]
@[simp]
theorem
AddUnits.min_val
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
{a : AddUnits α}
{b : AddUnits α}
:
@[simp]