Instances on PUnit #
This file collects facts about algebraic structures on the one-element type, e.g. that it is a commutative ring.
theorem
PUnit.addCommGroup.proof_4 :
∀ (x : PUnit.{u_1 + 1} ),
(fun (x : ℕ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) 0 x = (fun (x : ℕ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) 0 x
theorem
PUnit.addCommGroup.proof_9 :
∀ (n : ℕ) (a : PUnit.{u_1 + 1} ),
(fun (x : ℤ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (Int.negSucc n) a = (fun (x : ℤ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (Int.negSucc n) a
theorem
PUnit.addCommGroup.proof_7 :
∀ (a : PUnit.{u_1 + 1} ),
(fun (x : ℤ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) 0 a = (fun (x : ℤ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) 0 a
theorem
PUnit.addCommGroup.proof_8 :
∀ (n : ℕ) (a : PUnit.{u_1 + 1} ),
(fun (x : ℤ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (Int.ofNat (Nat.succ n)) a = (fun (x : ℤ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (Int.ofNat (Nat.succ n)) a
theorem
PUnit.addCommGroup.proof_5 :
∀ (n : ℕ) (x : PUnit.{u_1 + 1} ),
(fun (x : ℕ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (n + 1) x = (fun (x : ℕ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (n + 1) x
Equations
- PUnit.instAddPUnit = { add := fun (x x : PUnit.{1}) => () }
Equations
- PUnit.instMulPUnit = { mul := fun (x x : PUnit.{1}) => () }
Equations
- PUnit.instSubPUnit = { sub := fun (x x : PUnit.{1}) => () }
Equations
- PUnit.instDivPUnit = { div := fun (x x : PUnit.{1}) => () }
Equations
- PUnit.instNegPUnit = { neg := fun (x : PUnit.{1}) => () }
Equations
- PUnit.instInvPUnit = { inv := fun (x : PUnit.{1}) => () }
Equations
- PUnit.commRing = let __spread.0 := PUnit.commGroup; let __spread.1 := PUnit.addCommGroup; CommRing.mk ⋯
Equations
- PUnit.cancelCommMonoidWithZero = let __src := PUnit.commRing; CancelCommMonoidWithZero.mk
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- PUnit.vadd = { vadd := fun (x : R) (x : PUnit.{u_3 + 1} ) => PUnit.unit }
Equations
- PUnit.smul = { smul := fun (x : R) (x : PUnit.{u_3 + 1} ) => PUnit.unit }
@[simp]
@[simp]
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- PUnit.smulWithZero = let __src := PUnit.smul; SMulWithZero.mk ⋯
Equations
- PUnit.mulAction = let __src := PUnit.smul; MulAction.mk ⋯ ⋯
Equations
- PUnit.distribMulAction = let __src := PUnit.mulAction; DistribMulAction.mk ⋯ ⋯
Equations
- PUnit.mulDistribMulAction = let __src := PUnit.mulAction; MulDistribMulAction.mk ⋯ ⋯
Equations
- PUnit.mulSemiringAction = let __src := PUnit.distribMulAction; let __src_1 := PUnit.mulDistribMulAction; MulSemiringAction.mk ⋯ ⋯
Equations
- PUnit.mulActionWithZero = let __src := PUnit.mulAction; let __src_1 := PUnit.smulWithZero; MulActionWithZero.mk ⋯ ⋯