Pointwise star operation on sets #
This file defines the star operation pointwise on sets and provides the basic API.
Besides basic facts about about how the star operation acts on sets (e.g., (s ∩ t)⋆ = s⋆ ∩ t⋆
),
if s t : Set α
, then under suitable assumption on α
, it is shown
(s + t)⋆ = s⋆ + t⋆
(s * t)⋆ = t⋆ + s⋆
(s⁻¹)⋆ = (s⋆)⁻¹
@[simp]
theorem
Set.nonempty_star
{α : Type u_1}
[InvolutiveStar α]
{s : Set α}
:
Set.Nonempty (star s) ↔ Set.Nonempty s
theorem
Set.Nonempty.star
{α : Type u_1}
[InvolutiveStar α]
{s : Set α}
(h : Set.Nonempty s)
:
Set.Nonempty (star s)
@[simp]
Equations
- Set.instInvolutiveStarSet = InvolutiveStar.mk ⋯
theorem
Set.Finite.star
{α : Type u_1}
[InvolutiveStar α]
{s : Set α}
(hs : Set.Finite s)
:
Set.Finite (star s)
@[simp]
Equations
- ⋯ = ⋯
@[simp]
theorem
StarMemClass.star_coe_eq
{S : Type u_1}
{α : Type u_2}
[InvolutiveStar α]
[SetLike S α]
[StarMemClass S α]
(s : S)
: