instance
Prod.instTrivialStarProdInstStarProd
{R : Type u}
{S : Type v}
[Star R]
[Star S]
[TrivialStar R]
[TrivialStar S]
:
TrivialStar (R × S)
Equations
- ⋯ = ⋯
instance
Prod.instInvolutiveStarProd
{R : Type u}
{S : Type v}
[InvolutiveStar R]
[InvolutiveStar S]
:
InvolutiveStar (R × S)
Equations
- Prod.instInvolutiveStarProd = InvolutiveStar.mk ⋯
instance
Prod.instStarAddMonoidProdInstAddMonoid
{R : Type u}
{S : Type v}
[AddMonoid R]
[AddMonoid S]
[StarAddMonoid R]
[StarAddMonoid S]
:
StarAddMonoid (R × S)
Equations
- Prod.instStarAddMonoidProdInstAddMonoid = StarAddMonoid.mk ⋯
instance
Prod.instStarRingProdInstNonUnitalNonAssocSemiring
{R : Type u}
{S : Type v}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
[StarRing R]
[StarRing S]
:
Equations
- Prod.instStarRingProdInstNonUnitalNonAssocSemiring = let __src := inferInstanceAs (StarAddMonoid (R × S)); let __src_1 := inferInstanceAs (StarMul (R × S)); StarRing.mk ⋯
instance
Prod.instStarModuleProdInstStarProdSmul
{R : Type u}
{S : Type v}
{α : Type w}
[SMul α R]
[SMul α S]
[Star α]
[Star R]
[Star S]
[StarModule α R]
[StarModule α S]
:
StarModule α (R × S)
Equations
- ⋯ = ⋯
theorem
Units.embed_product_star
{R : Type u}
[Monoid R]
[StarMul R]
(u : Rˣ)
:
(Units.embedProduct R) (star u) = star ((Units.embedProduct R) u)