Conformal maps between complex vector spaces #
We prove the sufficient and necessary conditions for a real-linear map between complex vector spaces to be conformal.
Main results #
isConformalMap_complex_linear
: a nonzero complex linear map into an arbitrary complex normed space is conformal.isConformalMap_complex_linear_conj
: the composition of a nonzero complex linear map withconj
is complex linear.isConformalMap_iff_is_complex_or_conj_linear
: a real linear map between the complex plane is conformal iff it's complex linear or the composition of some complex linear map andconj
.
Warning #
Antiholomorphic functions such as the complex conjugate are considered as conformal functions in this file.
theorem
isConformalMap_conj :
IsConformalMap ↑{ toLinearEquiv := Complex.conjLIE.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }
theorem
isConformalMap_complex_linear
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[NormedSpace ℂ E]
{map : ℂ →L[ℂ] E}
(nonzero : map ≠ 0)
:
theorem
isConformalMap_complex_linear_conj
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[NormedSpace ℂ E]
{map : ℂ →L[ℂ] E}
(nonzero : map ≠ 0)
:
theorem
IsConformalMap.is_complex_or_conj_linear
{g : ℂ →L[ℝ] ℂ}
(h : IsConformalMap g)
:
(∃ (map : ℂ →L[ℂ] ℂ), ContinuousLinearMap.restrictScalars ℝ map = g) ∨ ∃ (map : ℂ →L[ℂ] ℂ), ContinuousLinearMap.restrictScalars ℝ map = ContinuousLinearMap.comp g ↑Complex.conjCLE
theorem
isConformalMap_iff_is_complex_or_conj_linear
{g : ℂ →L[ℝ] ℂ}
:
IsConformalMap g ↔ ((∃ (map : ℂ →L[ℂ] ℂ), ContinuousLinearMap.restrictScalars ℝ map = g) ∨ ∃ (map : ℂ →L[ℂ] ℂ), ContinuousLinearMap.restrictScalars ℝ map = ContinuousLinearMap.comp g ↑Complex.conjCLE) ∧ g ≠ 0
A real continuous linear map on the complex plane is conformal if and only if the map or its conjugate is complex linear, and the map is nonvanishing.