Convexity of functions and derivatives #
Here we relate convexity of functions ℝ → ℝ
to properties of their derivatives.
Main results #
MonotoneOn.convexOn_of_deriv
,convexOn_of_deriv2_nonneg
: if the derivative of a function is increasing or its second derivative is nonnegative, then the original function is convex.
If a function f
is continuous on a convex set D ⊆ ℝ
, is differentiable on its interior,
and f'
is monotone on the interior, then f
is convex on D
.
If a function f
is continuous on a convex set D ⊆ ℝ
, is differentiable on its interior,
and f'
is antitone on the interior, then f
is concave on D
.
If a function f
is continuous on a convex set D ⊆ ℝ
, and f'
is strictly monotone on the
interior, then f
is strictly convex on D
.
Note that we don't require differentiability, since it is guaranteed at all but at most
one point by the strict monotonicity of f'
.
If a function f
is continuous on a convex set D ⊆ ℝ
and f'
is strictly antitone on the
interior, then f
is strictly concave on D
.
Note that we don't require differentiability, since it is guaranteed at all but at most
one point by the strict antitonicity of f'
.
If a function f
is differentiable and f'
is monotone on ℝ
then f
is convex.
If a function f
is differentiable and f'
is antitone on ℝ
then f
is concave.
If a function f
is continuous and f'
is strictly monotone on ℝ
then f
is strictly
convex. Note that we don't require differentiability, since it is guaranteed at all but at most
one point by the strict monotonicity of f'
.
If a function f
is continuous and f'
is strictly antitone on ℝ
then f
is strictly
concave. Note that we don't require differentiability, since it is guaranteed at all but at most
one point by the strict antitonicity of f'
.
If a function f
is continuous on a convex set D ⊆ ℝ
, is twice differentiable on its
interior, and f''
is nonnegative on the interior, then f
is convex on D
.
If a function f
is continuous on a convex set D ⊆ ℝ
, is twice differentiable on its
interior, and f''
is nonpositive on the interior, then f
is concave on D
.
If a function f
is continuous on a convex set D ⊆ ℝ
, is twice differentiable on its
interior, and f''
is nonnegative on the interior, then f
is convex on D
.
If a function f
is continuous on a convex set D ⊆ ℝ
, is twice differentiable on its
interior, and f''
is nonpositive on the interior, then f
is concave on D
.
If a function f
is continuous on a convex set D ⊆ ℝ
and f''
is strictly positive on the
interior, then f
is strictly convex on D
.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly positive, except at at most one point.
If a function f
is continuous on a convex set D ⊆ ℝ
and f''
is strictly negative on the
interior, then f
is strictly concave on D
.
Note that we don't require twice differentiability explicitly as it already implied by the second
derivative being strictly negative, except at at most one point.
If a function f
is twice differentiable on an open convex set D ⊆ ℝ
and
f''
is nonnegative on D
, then f
is convex on D
.
If a function f
is twice differentiable on an open convex set D ⊆ ℝ
and
f''
is nonpositive on D
, then f
is concave on D
.
If a function f
is continuous on a convex set D ⊆ ℝ
and f''
is strictly positive on D
,
then f
is strictly convex on D
.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly positive, except at at most one point.
If a function f
is continuous on a convex set D ⊆ ℝ
and f''
is strictly negative on D
,
then f
is strictly concave on D
.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly negative, except at at most one point.
If a function f
is twice differentiable on ℝ
, and f''
is nonnegative on ℝ
,
then f
is convex on ℝ
.
If a function f
is twice differentiable on ℝ
, and f''
is nonpositive on ℝ
,
then f
is concave on ℝ
.
If a function f
is continuous on ℝ
, and f''
is strictly positive on ℝ
,
then f
is strictly convex on ℝ
.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly positive, except at at most one point.
If a function f
is continuous on ℝ
, and f''
is strictly negative on ℝ
,
then f
is strictly concave on ℝ
.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly negative, except at at most one point.