Documentation

Mathlib.CategoryTheory.Functor.Currying

Curry and uncurry, as functors. #

We define curry : ((C × D) ⥤ E) ⥤ (C ⥤ (D ⥤ E)) and uncurry : (C ⥤ (D ⥤ E)) ⥤ ((C × D) ⥤ E), and verify that they provide an equivalence of categories currying : (C ⥤ (D ⥤ E)) ≌ ((C × D) ⥤ E).

@[simp]
theorem CategoryTheory.uncurry_obj_map {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) {X : C × D} {Y : C × D} (f : X Y) :
(CategoryTheory.uncurry.obj F).map f = CategoryTheory.CategoryStruct.comp ((F.map f.1).app X.2) ((F.obj Y.1).map f.2)
@[simp]
theorem CategoryTheory.uncurry_map_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] :
∀ {X Y : CategoryTheory.Functor C (CategoryTheory.Functor D E)} (T : X Y) (X_1 : C × D), (CategoryTheory.uncurry.map T).app X_1 = (T.app X_1.1).app X_1.2
@[simp]
theorem CategoryTheory.uncurry_obj_obj {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (X : C × D) :
(CategoryTheory.uncurry.obj F).obj X = (F.obj X.1).obj X.2

The uncurrying functor, taking a functor C ⥤ (D ⥤ E) and producing a functor (C × D) ⥤ E.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The object level part of the currying functor. (See curry for the functorial version.)

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.curry_obj_obj_map {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor (C × D) E) (X : C) :
      ∀ {X_1 Y : D} (g : X_1 Y), ((CategoryTheory.curry.obj F).obj X).map g = F.map (CategoryTheory.CategoryStruct.id X, g)
      @[simp]
      theorem CategoryTheory.curry_map_app_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] :
      ∀ {X Y : CategoryTheory.Functor (C × D) E} (T : X Y) (X_1 : C) (Y_1 : D), ((CategoryTheory.curry.map T).app X_1).app Y_1 = T.app (X_1, Y_1)
      @[simp]
      theorem CategoryTheory.curry_obj_map_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor (C × D) E) :
      ∀ {X Y : C} (f : X Y) (Y_1 : D), ((CategoryTheory.curry.obj F).map f).app Y_1 = F.map (f, CategoryTheory.CategoryStruct.id Y_1)
      @[simp]
      theorem CategoryTheory.curry_obj_obj_obj {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor (C × D) E) (X : C) (Y : D) :
      ((CategoryTheory.curry.obj F).obj X).obj Y = F.obj (X, Y)

      The currying functor, taking a functor (C × D) ⥤ E and producing a functor C ⥤ (D ⥤ E).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.currying_unitIso_inv_app_app_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (X : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (X : C) (X : D) :
        ((CategoryTheory.currying.unitIso.inv.app X✝¹).app X✝).app X = CategoryTheory.CategoryStruct.id ((X✝¹.obj X✝).obj X)
        @[simp]
        theorem CategoryTheory.currying_counitIso_hom_app_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (X : CategoryTheory.Functor (C × D) E) (X : C × D) :
        (CategoryTheory.currying.counitIso.hom.app X✝).app X = CategoryTheory.CategoryStruct.id (X✝.obj (X.1, X.2))
        @[simp]
        theorem CategoryTheory.currying_inverse_map_app_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] :
        ∀ {X Y : CategoryTheory.Functor (C × D) E} (T : X Y) (X_1 : C) (Y_1 : D), ((CategoryTheory.currying.inverse.map T).app X_1).app Y_1 = T.app (X_1, Y_1)
        @[simp]
        theorem CategoryTheory.currying_functor_obj_obj {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (X : C × D) :
        (CategoryTheory.currying.functor.obj F).obj X = (F.obj X.1).obj X.2
        @[simp]
        theorem CategoryTheory.currying_functor_obj_map {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) {X : C × D} {Y : C × D} (f : X Y) :
        (CategoryTheory.currying.functor.obj F).map f = CategoryTheory.CategoryStruct.comp ((F.map f.1).app X.2) ((F.obj Y.1).map f.2)
        @[simp]
        theorem CategoryTheory.currying_counitIso_inv_app_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (X : CategoryTheory.Functor (C × D) E) (X : C × D) :
        (CategoryTheory.currying.counitIso.inv.app X✝).app X = CategoryTheory.CategoryStruct.id (X✝.obj (X.1, X.2))
        @[simp]
        theorem CategoryTheory.currying_inverse_obj_obj_obj {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor (C × D) E) (X : C) (Y : D) :
        ((CategoryTheory.currying.inverse.obj F).obj X).obj Y = F.obj (X, Y)
        @[simp]
        theorem CategoryTheory.currying_unitIso_hom_app_app_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (X : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (X : C) (X : D) :
        ((CategoryTheory.currying.unitIso.hom.app X✝¹).app X✝).app X = CategoryTheory.CategoryStruct.id ((X✝¹.obj X✝).obj X)
        @[simp]
        theorem CategoryTheory.currying_inverse_obj_obj_map {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor (C × D) E) (X : C) :
        ∀ {X_1 Y : D} (g : X_1 Y), ((CategoryTheory.currying.inverse.obj F).obj X).map g = F.map (CategoryTheory.CategoryStruct.id X, g)
        @[simp]
        theorem CategoryTheory.currying_functor_map_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] :
        ∀ {X Y : CategoryTheory.Functor C (CategoryTheory.Functor D E)} (T : X Y) (X_1 : C × D), (CategoryTheory.currying.functor.map T).app X_1 = (T.app X_1.1).app X_1.2
        @[simp]
        theorem CategoryTheory.currying_inverse_obj_map_app {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] (F : CategoryTheory.Functor (C × D) E) :
        ∀ {X Y : C} (f : X Y) (Y_1 : D), ((CategoryTheory.currying.inverse.obj F).map f).app Y_1 = F.map (f, CategoryTheory.CategoryStruct.id Y_1)

        The equivalence of functor categories given by currying/uncurrying.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          F.flip is isomorphic to uncurrying F, swapping the variables, and currying.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The uncurrying of F.flip is isomorphic to swapping the factors followed by the uncurrying of F.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.whiskeringRight₂_map_app_app_app (B : Type u₁) [CategoryTheory.Category.{v₁, u₁} B] (C : Type u₂) [CategoryTheory.Category.{v₂, u₂} C] (D : Type u₃) [CategoryTheory.Category.{v₃, u₃} D] (E : Type u₄) [CategoryTheory.Category.{v₄, u₄} E] :
              ∀ {X Y : CategoryTheory.Functor C (CategoryTheory.Functor D E)} (f : X Y) (X_1 : CategoryTheory.Functor B C) (Y_1 : CategoryTheory.Functor B D) (c : B), ((((CategoryTheory.whiskeringRight₂ B C D E).map f).app X_1).app Y_1).app c = (f.app (X_1.obj c)).app (Y_1.obj c)
              @[simp]
              theorem CategoryTheory.whiskeringRight₂_obj_map_app_app (B : Type u₁) [CategoryTheory.Category.{v₁, u₁} B] (C : Type u₂) [CategoryTheory.Category.{v₂, u₂} C] (D : Type u₃) [CategoryTheory.Category.{v₃, u₃} D] (E : Type u₄) [CategoryTheory.Category.{v₄, u₄} E] (X : CategoryTheory.Functor C (CategoryTheory.Functor D E)) :
              ∀ {X_1 Y : CategoryTheory.Functor B C} (f : X_1 Y) (Y_1 : CategoryTheory.Functor B D) (X_2 : B), ((((CategoryTheory.whiskeringRight₂ B C D E).obj X).map f).app Y_1).app X_2 = (X.map (f.app X_2)).app (Y_1.obj X_2)
              @[simp]
              theorem CategoryTheory.whiskeringRight₂_obj_obj_obj_map (B : Type u₁) [CategoryTheory.Category.{v₁, u₁} B] (C : Type u₂) [CategoryTheory.Category.{v₂, u₂} C] (D : Type u₃) [CategoryTheory.Category.{v₃, u₃} D] (E : Type u₄) [CategoryTheory.Category.{v₄, u₄} E] (X : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (X : CategoryTheory.Functor B C) (Y : CategoryTheory.Functor B D) :
              ∀ {X_1 Y_1 : B} (f : X_1 Y_1), ((((CategoryTheory.whiskeringRight₂ B C D E).obj X✝).obj X).obj Y).map f = CategoryTheory.CategoryStruct.comp ((X✝.map (X.map f)).app (Y.obj X_1)) ((X✝.obj (X.obj Y_1)).map (Y.map f))
              @[simp]
              theorem CategoryTheory.whiskeringRight₂_obj_obj_map_app (B : Type u₁) [CategoryTheory.Category.{v₁, u₁} B] (C : Type u₂) [CategoryTheory.Category.{v₂, u₂} C] (D : Type u₃) [CategoryTheory.Category.{v₃, u₃} D] (E : Type u₄) [CategoryTheory.Category.{v₄, u₄} E] (X : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (X : CategoryTheory.Functor B C) :
              ∀ {X_1 Y : CategoryTheory.Functor B D} (g : X_1 Y) (X_2 : B), ((((CategoryTheory.whiskeringRight₂ B C D E).obj X✝).obj X).map g).app X_2 = (X✝.obj (X.obj X_2)).map (g.app X_2)

              A version of CategoryTheory.whiskeringRight for bifunctors, obtained by uncurrying, applying whiskeringRight and currying back

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem CategoryTheory.Functor.uncurry_obj_curry_obj {B : Type u₁} [CategoryTheory.Category.{v₁, u₁} B] {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] (F : CategoryTheory.Functor (B × C) D) :
                CategoryTheory.uncurry.obj (CategoryTheory.curry.obj F) = F
                theorem CategoryTheory.Functor.curry_obj_injective {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {E : Type u₄} [CategoryTheory.Category.{v₄, u₄} E] {F₁ : CategoryTheory.Functor (C × D) E} {F₂ : CategoryTheory.Functor (C × D) E} (h : CategoryTheory.curry.obj F₁ = CategoryTheory.curry.obj F₂) :
                F₁ = F₂
                theorem CategoryTheory.Functor.uncurry_obj_injective {B : Type u₁} [CategoryTheory.Category.{v₁, u₁} B] {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {D : Type u₃} [CategoryTheory.Category.{v₃, u₃} D] {F₁ : CategoryTheory.Functor B (CategoryTheory.Functor C D)} {F₂ : CategoryTheory.Functor B (CategoryTheory.Functor C D)} (h : CategoryTheory.uncurry.obj F₁ = CategoryTheory.uncurry.obj F₂) :
                F₁ = F₂