The empty category #
Defines a category structure on PEmpty
, and the unique functor PEmpty ⥤ C
for any category C
.
Equations
- ⋯ = ⋯
def
CategoryTheory.functorOfIsEmpty
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(D : Type u')
[CategoryTheory.Category.{v', u'} D]
[IsEmpty C]
:
The (unique) functor from an empty category.
Equations
- CategoryTheory.functorOfIsEmpty C D = { toPrefunctor := { obj := fun (a : C) => isEmptyElim a, map := fun {X Y : C} => isEmptyElim X }, map_id := ⋯, map_comp := ⋯ }
def
CategoryTheory.Functor.isEmptyExt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type u'}
[CategoryTheory.Category.{v', u'} D]
[IsEmpty C]
(F : CategoryTheory.Functor C D)
(G : CategoryTheory.Functor C D)
:
F ≅ G
Any two functors out of an empty category are isomorphic.
Equations
- CategoryTheory.Functor.isEmptyExt F G = CategoryTheory.NatIso.ofComponents (fun (a : C) => isEmptyElim a) ⋯
def
CategoryTheory.equivalenceOfIsEmpty
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(D : Type u')
[CategoryTheory.Category.{v', u'} D]
[IsEmpty C]
[IsEmpty D]
:
C ≌ D
The equivalence between two empty categories.
Equations
- One or more equations did not get rendered due to their size.
Equivalence between two empty categories.
The canonical functor out of the empty category.
Equations
- CategoryTheory.Functor.empty C = CategoryTheory.Discrete.functor PEmpty.elim
def
CategoryTheory.Functor.emptyExt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
(G : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
:
F ≅ G
Any two functors out of the empty category are isomorphic.
Equations
- CategoryTheory.Functor.emptyExt F G = CategoryTheory.Discrete.natIso fun (x : CategoryTheory.Discrete PEmpty.{w + 1} ) => PEmpty.elim x.as
def
CategoryTheory.Functor.uniqueFromEmpty
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
:
Any functor out of the empty category is isomorphic to the canonical functor from the empty category.
theorem
CategoryTheory.Functor.empty_ext'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
(G : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
:
F = G
Any two functors out of the empty category are equal. You probably want to use
emptyExt
instead of this.