The empty category #
Defines a category structure on PEmpty
, and the unique functor PEmpty ⥤ C
for any category C
.
Equations
- ⋯ = ⋯
def
CategoryTheory.functorOfIsEmpty
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(D : Type u')
[CategoryTheory.Category.{v', u'} D]
[IsEmpty C]
:
The (unique) functor from an empty category.
Equations
- CategoryTheory.functorOfIsEmpty C D = { toPrefunctor := { obj := fun (a : C) => isEmptyElim a, map := fun {X Y : C} => isEmptyElim X }, map_id := ⋯, map_comp := ⋯ }
Instances For
def
CategoryTheory.Functor.isEmptyExt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type u'}
[CategoryTheory.Category.{v', u'} D]
[IsEmpty C]
(F : CategoryTheory.Functor C D)
(G : CategoryTheory.Functor C D)
:
F ≅ G
Any two functors out of an empty category are isomorphic.
Equations
- CategoryTheory.Functor.isEmptyExt F G = CategoryTheory.NatIso.ofComponents (fun (a : C) => isEmptyElim a) ⋯
Instances For
def
CategoryTheory.equivalenceOfIsEmpty
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(D : Type u')
[CategoryTheory.Category.{v', u'} D]
[IsEmpty C]
[IsEmpty D]
:
C ≌ D
The equivalence between two empty categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equivalence between two empty categories.
Equations
Instances For
The canonical functor out of the empty category.
Equations
- CategoryTheory.Functor.empty C = CategoryTheory.Discrete.functor PEmpty.elim
Instances For
def
CategoryTheory.Functor.emptyExt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
(G : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
:
F ≅ G
Any two functors out of the empty category are isomorphic.
Equations
- CategoryTheory.Functor.emptyExt F G = CategoryTheory.Discrete.natIso fun (x : CategoryTheory.Discrete PEmpty.{w + 1} ) => PEmpty.elim x.as
Instances For
def
CategoryTheory.Functor.uniqueFromEmpty
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
:
Any functor out of the empty category is isomorphic to the canonical functor from the empty category.
Equations
Instances For
theorem
CategoryTheory.Functor.empty_ext'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
(G : CategoryTheory.Functor (CategoryTheory.Discrete PEmpty.{w + 1} ) C)
:
F = G
Any two functors out of the empty category are equal. You probably want to use
emptyExt
instead of this.