Typeclass for a type F
with an injective map to A ↪ B
#
This typeclass is primarily for use by embeddings such as RelEmbedding
.
Basic usage of EmbeddingLike
#
A typical type of embeddings should be declared as:
structure MyEmbedding (A B : Type*) [MyClass A] [MyClass B] :=
(toFun : A → B)
(injective' : Function.Injective toFun)
(map_op' : ∀ (x y : A), toFun (MyClass.op x y) = MyClass.op (toFun x) (toFun y))
namespace MyEmbedding
variable (A B : Type*) [MyClass A] [MyClass B]
instance : FunLike (MyEmbedding A B) A B where
coe := MyEmbedding.toFun
coe_injective' := fun f g h ↦ by cases f; cases g; congr
-- This instance is optional if you follow the "Embedding class" design below:
instance : EmbeddingLike (MyEmbedding A B) A B where
injective' := MyEmbedding.injective'
@[ext] theorem ext {f g : MyEmbedding A B} (h : ∀ x, f x = g x) : f = g := DFunLike.ext f g h
/-- Copy of a `MyEmbedding` with a new `toFun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : MyEmbedding A B) (f' : A → B) (h : f' = ⇑f) : MyEmbedding A B :=
{ toFun := f'
injective' := h.symm ▸ f.injective'
map_op' := h.symm ▸ f.map_op' }
end MyEmbedding
This file will then provide a CoeFun
instance and various
extensionality and simp lemmas.
Embedding classes extending EmbeddingLike
#
The EmbeddingLike
design provides further benefits if you put in a bit more work.
The first step is to extend EmbeddingLike
to create a class of those types satisfying
the axioms of your new type of morphisms.
Continuing the example above:
/-- `MyEmbeddingClass F A B` states that `F` is a type of `MyClass.op`-preserving embeddings.
You should extend this class when you extend `MyEmbedding`. -/
class MyEmbeddingClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
[FunLike F A B]
extends EmbeddingLike F A B :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
@[simp]
lemma map_op {F A B : Type*} [MyClass A] [MyClass B] [FunLike F A B] [MyEmbeddingClass F A B]
(f : F) (x y : A) :
f (MyClass.op x y) = MyClass.op (f x) (f y) :=
MyEmbeddingClass.map_op _ _ _
namespace MyEmbedding
variable {A B : Type*} [MyClass A] [MyClass B]
-- You can replace `MyEmbedding.EmbeddingLike` with the below instance:
instance : MyEmbeddingClass (MyEmbedding A B) A B where
injective' := MyEmbedding.injective'
map_op := MyEmbedding.map_op'
end MyEmbedding
The second step is to add instances of your new MyEmbeddingClass
for all types extending
MyEmbedding
.
Typically, you can just declare a new class analogous to MyEmbeddingClass
:
structure CoolerEmbedding (A B : Type*) [CoolClass A] [CoolClass B] extends MyEmbedding A B :=
(map_cool' : toFun CoolClass.cool = CoolClass.cool)
class CoolerEmbeddingClass (F : Type*) (A B : outParam <| Type*) [CoolClass A] [CoolClass B]
[FunLike F A B]
extends MyEmbeddingClass F A B :=
(map_cool : ∀ (f : F), f CoolClass.cool = CoolClass.cool)
@[simp]
lemma map_cool {F A B : Type*} [CoolClass A] [CoolClass B]
[FunLike F A B] [CoolerEmbeddingClass F A B] (f : F) :
f CoolClass.cool = CoolClass.cool :=
CoolerEmbeddingClass.map_cool _
variable {A B : Type*} [CoolClass A] [CoolClass B]
instance : FunLike (CoolerEmbedding A B) A B where
coe f := f.toFun
coe_injective' f g h := by cases f; cases g; congr; apply DFunLike.coe_injective; congr
instance : CoolerEmbeddingClass (CoolerEmbedding A B) A B where
injective' f := f.injective'
map_op f := f.map_op'
map_cool f := f.map_cool'
-- [Insert `ext` and `copy` here]
Then any declaration taking a specific type of morphisms as parameter can instead take the class you just defined:
-- Compare with: lemma do_something (f : MyEmbedding A B) : sorry := sorry
lemma do_something {F : Type*} [FunLike F A B] [MyEmbeddingClass F A B] (f : F) : sorry := sorry
This means anything set up for MyEmbedding
s will automatically work for CoolerEmbeddingClass
es,
and defining CoolerEmbeddingClass
only takes a constant amount of effort,
instead of linearly increasing the work per MyEmbedding
-related declaration.
The class EmbeddingLike F α β
expresses that terms of type F
have an
injective coercion to injective functions α ↪ β
.
- injective' : ∀ (f : F), Function.Injective ⇑f
The coercion to functions must produce injective functions.