Documentation

Mathlib.Data.Int.Div

Lemmas relating / in with the ordering. #

theorem Int.eq_mul_div_of_mul_eq_mul_of_dvd_left {a : } {b : } {c : } {d : } (hb : b 0) (hbc : b c) (h : b * a = c * d) :
a = c / b * d
theorem Int.eq_zero_of_dvd_of_natAbs_lt_natAbs {a : } {b : } (w : a b) (h : Int.natAbs b < Int.natAbs a) :
b = 0

If an integer with larger absolute value divides an integer, it is zero.

theorem Int.eq_zero_of_dvd_of_nonneg_of_lt {a : } {b : } (w₁ : 0 a) (w₂ : a < b) (h : b a) :
a = 0
theorem Int.eq_of_mod_eq_of_natAbs_sub_lt_natAbs {a : } {b : } {c : } (h1 : a % b = c) (h2 : Int.natAbs (a - c) < Int.natAbs b) :
a = c

If two integers are congruent to a sufficiently large modulus, they are equal.

theorem Int.natAbs_le_of_dvd_ne_zero {s : } {t : } (hst : s t) (ht : t 0) :