Lemmas relating /
in ℤ
with the ordering. #
theorem
Int.eq_zero_of_dvd_of_natAbs_lt_natAbs
{a : ℤ}
{b : ℤ}
(w : a ∣ b)
(h : Int.natAbs b < Int.natAbs a)
:
b = 0
If an integer with larger absolute value divides an integer, it is zero.
theorem
Int.eq_of_mod_eq_of_natAbs_sub_lt_natAbs
{a : ℤ}
{b : ℤ}
{c : ℤ}
(h1 : a % b = c)
(h2 : Int.natAbs (a - c) < Int.natAbs b)
:
a = c
If two integers are congruent to a sufficiently large modulus, they are equal.
theorem
Int.natAbs_le_of_dvd_ne_zero
{s : ℤ}
{t : ℤ}
(hst : s ∣ t)
(ht : t ≠ 0)
:
Int.natAbs s ≤ Int.natAbs t