Lists with no duplicates #
List.Nodup
is defined in Data/List/Basic
. In this file we prove various properties of this
predicate.
@[simp]
theorem
List.nodup_cons
{α : Type u}
{a : α}
{l : List α}
:
List.Nodup (a :: l) ↔ a ∉ l ∧ List.Nodup l
theorem
List.Pairwise.nodup
{α : Type u}
{l : List α}
{r : α → α → Prop}
[IsIrrefl α r]
(h : List.Pairwise r l)
:
theorem
List.rel_nodup
{α : Type u}
{β : Type v}
{r : α → β → Prop}
(hr : Relator.BiUnique r)
:
(List.Forall₂ r ⇒ fun (x x_1 : Prop) => x ↔ x_1) List.Nodup List.Nodup
theorem
List.Nodup.cons
{α : Type u}
{l : List α}
{a : α}
(ha : a ∉ l)
(hl : List.Nodup l)
:
List.Nodup (a :: l)
theorem
List.Nodup.sublist
{α : Type u}
{l₁ : List α}
{l₂ : List α}
:
List.Sublist l₁ l₂ → List.Nodup l₂ → List.Nodup l₁
theorem
List.nodup_iff_sublist
{α : Type u}
{l : List α}
:
List.Nodup l ↔ ∀ (a : α), ¬List.Sublist [a, a] l
@[deprecated List.nodup_iff_injective_get]
theorem
List.nodup_iff_nthLe_inj
{α : Type u}
{l : List α}
:
List.Nodup l ↔ ∀ (i j : ℕ) (h₁ : i < List.length l) (h₂ : j < List.length l), List.nthLe l i h₁ = List.nthLe l j h₂ → i = j
theorem
List.Nodup.get_inj_iff
{α : Type u}
{l : List α}
(h : List.Nodup l)
{i : Fin (List.length l)}
{j : Fin (List.length l)}
:
@[deprecated List.Nodup.get_inj_iff]
theorem
List.Nodup.nthLe_inj_iff
{α : Type u}
{l : List α}
(h : List.Nodup l)
{i : ℕ}
{j : ℕ}
(hi : i < List.length l)
(hj : j < List.length l)
:
List.nthLe l i hi = List.nthLe l j hj ↔ i = j
theorem
List.nodup_iff_get?_ne_get?
{α : Type u}
{l : List α}
:
List.Nodup l ↔ ∀ (i j : ℕ), i < j → j < List.length l → List.get? l i ≠ List.get? l j
theorem
List.not_nodup_of_get_eq_of_ne
{α : Type u}
(xs : List α)
(n : Fin (List.length xs))
(m : Fin (List.length xs))
(h : List.get xs n = List.get xs m)
(hne : n ≠ m)
:
¬List.Nodup xs
@[deprecated List.not_nodup_of_get_eq_of_ne]
theorem
List.nthLe_eq_of_ne_imp_not_nodup
{α : Type u}
(xs : List α)
(n : ℕ)
(m : ℕ)
(hn : n < List.length xs)
(hm : m < List.length xs)
(h : List.nthLe xs n hn = List.nthLe xs m hm)
(hne : n ≠ m)
:
¬List.Nodup xs
theorem
List.get_indexOf
{α : Type u}
[DecidableEq α]
{l : List α}
(H : List.Nodup l)
(i : Fin (List.length l))
:
List.indexOf (List.get l i) l = ↑i
@[simp, deprecated List.get_indexOf]
theorem
List.nthLe_index_of
{α : Type u}
[DecidableEq α]
{l : List α}
(H : List.Nodup l)
(n : ℕ)
(h : n < List.length l)
:
List.indexOf (List.nthLe l n h) l = n
theorem
List.nodup_iff_count_le_one
{α : Type u}
[DecidableEq α]
{l : List α}
:
List.Nodup l ↔ ∀ (a : α), List.count a l ≤ 1
theorem
List.nodup_iff_count_eq_one
{α : Type u}
{l : List α}
[DecidableEq α]
:
List.Nodup l ↔ ∀ a ∈ l, List.count a l = 1
@[simp]
theorem
List.count_eq_one_of_mem
{α : Type u}
[DecidableEq α]
{a : α}
{l : List α}
(d : List.Nodup l)
(h : a ∈ l)
:
List.count a l = 1
theorem
List.count_eq_of_nodup
{α : Type u}
[DecidableEq α]
{a : α}
{l : List α}
(d : List.Nodup l)
:
List.count a l = if a ∈ l then 1 else 0
theorem
List.Nodup.of_append_left
{α : Type u}
{l₁ : List α}
{l₂ : List α}
:
List.Nodup (l₁ ++ l₂) → List.Nodup l₁
theorem
List.Nodup.of_append_right
{α : Type u}
{l₁ : List α}
{l₂ : List α}
:
List.Nodup (l₁ ++ l₂) → List.Nodup l₂
theorem
List.nodup_append
{α : Type u}
{l₁ : List α}
{l₂ : List α}
:
List.Nodup (l₁ ++ l₂) ↔ List.Nodup l₁ ∧ List.Nodup l₂ ∧ List.Disjoint l₁ l₂
theorem
List.disjoint_of_nodup_append
{α : Type u}
{l₁ : List α}
{l₂ : List α}
(d : List.Nodup (l₁ ++ l₂))
:
List.Disjoint l₁ l₂
theorem
List.Nodup.append
{α : Type u}
{l₁ : List α}
{l₂ : List α}
(d₁ : List.Nodup l₁)
(d₂ : List.Nodup l₂)
(dj : List.Disjoint l₁ l₂)
:
List.Nodup (l₁ ++ l₂)
theorem
List.nodup_append_comm
{α : Type u}
{l₁ : List α}
{l₂ : List α}
:
List.Nodup (l₁ ++ l₂) ↔ List.Nodup (l₂ ++ l₁)
theorem
List.nodup_middle
{α : Type u}
{a : α}
{l₁ : List α}
{l₂ : List α}
:
List.Nodup (l₁ ++ a :: l₂) ↔ List.Nodup (a :: (l₁ ++ l₂))
theorem
List.Nodup.of_map
{α : Type u}
{β : Type v}
(f : α → β)
{l : List α}
:
List.Nodup (List.map f l) → List.Nodup l
theorem
List.Nodup.map_on
{α : Type u}
{β : Type v}
{l : List α}
{f : α → β}
(H : ∀ x ∈ l, ∀ y ∈ l, f x = f y → x = y)
(d : List.Nodup l)
:
List.Nodup (List.map f l)
theorem
List.nodup_map_iff_inj_on
{α : Type u}
{β : Type v}
{f : α → β}
{l : List α}
(d : List.Nodup l)
:
List.Nodup (List.map f l) ↔ ∀ x ∈ l, ∀ y ∈ l, f x = f y → x = y
theorem
List.Nodup.map
{α : Type u}
{β : Type v}
{l : List α}
{f : α → β}
(hf : Function.Injective f)
:
List.Nodup l → List.Nodup (List.map f l)
theorem
List.nodup_map_iff
{α : Type u}
{β : Type v}
{f : α → β}
{l : List α}
(hf : Function.Injective f)
:
List.Nodup (List.map f l) ↔ List.Nodup l
@[simp]
Alias of the forward direction of List.nodup_attach
.
Alias of the reverse direction of List.nodup_attach
.
theorem
List.Nodup.pmap
{α : Type u}
{β : Type v}
{p : α → Prop}
{f : (a : α) → p a → β}
{l : List α}
{H : ∀ a ∈ l, p a}
(hf : ∀ (a : α) (ha : p a) (b : α) (hb : p b), f a ha = f b hb → a = b)
(h : List.Nodup l)
:
List.Nodup (List.pmap f l H)
theorem
List.Nodup.filter
{α : Type u}
(p : α → Bool)
{l : List α}
:
List.Nodup l → List.Nodup (List.filter p l)
@[simp]
theorem
List.Nodup.erase_eq_filter
{α : Type u}
[DecidableEq α]
{l : List α}
(d : List.Nodup l)
(a : α)
:
List.erase l a = List.filter (fun (x : α) => decide (x ≠ a)) l
theorem
List.Nodup.erase
{α : Type u}
{l : List α}
[DecidableEq α]
(a : α)
:
List.Nodup l → List.Nodup (List.erase l a)
theorem
List.Nodup.erase_get
{α : Type u}
[DecidableEq α]
{l : List α}
(hl : List.Nodup l)
(i : Fin (List.length l))
:
List.erase l (List.get l i) = List.eraseIdx l ↑i
theorem
List.Nodup.diff
{α : Type u}
{l₁ : List α}
{l₂ : List α}
[DecidableEq α]
:
List.Nodup l₁ → List.Nodup (List.diff l₁ l₂)
theorem
List.Nodup.mem_erase_iff
{α : Type u}
{l : List α}
{a : α}
{b : α}
[DecidableEq α]
(d : List.Nodup l)
:
theorem
List.Nodup.not_mem_erase
{α : Type u}
{l : List α}
{a : α}
[DecidableEq α]
(h : List.Nodup l)
:
a ∉ List.erase l a
theorem
List.nodup_join
{α : Type u}
{L : List (List α)}
:
List.Nodup (List.join L) ↔ (∀ l ∈ L, List.Nodup l) ∧ List.Pairwise List.Disjoint L
theorem
List.nodup_bind
{α : Type u}
{β : Type v}
{l₁ : List α}
{f : α → List β}
:
List.Nodup (List.bind l₁ f) ↔ (∀ x ∈ l₁, List.Nodup (f x)) ∧ List.Pairwise (fun (a b : α) => List.Disjoint (f a) (f b)) l₁
theorem
List.Nodup.product
{α : Type u}
{β : Type v}
{l₁ : List α}
{l₂ : List β}
(d₁ : List.Nodup l₁)
(d₂ : List.Nodup l₂)
:
List.Nodup (l₁ ×ˢ l₂)
theorem
List.Nodup.sigma
{α : Type u}
{l₁ : List α}
{σ : α → Type u_1}
{l₂ : (a : α) → List (σ a)}
(d₁ : List.Nodup l₁)
(d₂ : ∀ (a : α), List.Nodup (l₂ a))
:
List.Nodup (List.sigma l₁ l₂)
theorem
List.Nodup.filterMap
{α : Type u}
{β : Type v}
{l : List α}
{f : α → Option β}
(h : ∀ (a a' : α), ∀ b ∈ f a, b ∈ f a' → a = a')
:
List.Nodup l → List.Nodup (List.filterMap f l)
theorem
List.Nodup.concat
{α : Type u}
{l : List α}
{a : α}
(h : a ∉ l)
(h' : List.Nodup l)
:
List.Nodup (List.concat l a)
theorem
List.Nodup.insert
{α : Type u}
{l : List α}
{a : α}
[DecidableEq α]
(h : List.Nodup l)
:
List.Nodup (List.insert a l)
theorem
List.Nodup.union
{α : Type u}
{l₂ : List α}
[DecidableEq α]
(l₁ : List α)
(h : List.Nodup l₂)
:
List.Nodup (l₁ ∪ l₂)
theorem
List.Nodup.inter
{α : Type u}
{l₁ : List α}
[DecidableEq α]
(l₂ : List α)
:
List.Nodup l₁ → List.Nodup (l₁ ∩ l₂)
theorem
List.Nodup.diff_eq_filter
{α : Type u}
[DecidableEq α]
{l₁ : List α}
{l₂ : List α}
:
List.Nodup l₁ → List.diff l₁ l₂ = List.filter (fun (x : α) => decide (x ∉ l₂)) l₁
theorem
List.Nodup.mem_diff_iff
{α : Type u}
{l₁ : List α}
{l₂ : List α}
{a : α}
[DecidableEq α]
(hl₁ : List.Nodup l₁)
:
theorem
List.Nodup.set
{α : Type u}
{l : List α}
{n : ℕ}
{a : α}
:
List.Nodup l → a ∉ l → List.Nodup (List.set l n a)
theorem
List.Nodup.map_update
{α : Type u}
{β : Type v}
[DecidableEq α]
{l : List α}
(hl : List.Nodup l)
(f : α → β)
(x : α)
(y : β)
:
List.map (Function.update f x y) l = if x ∈ l then List.set (List.map f l) (List.indexOf x l) y else List.map f l
theorem
List.Nodup.pairwise_of_forall_ne
{α : Type u}
{l : List α}
{r : α → α → Prop}
(hl : List.Nodup l)
(h : ∀ a ∈ l, ∀ b ∈ l, a ≠ b → r a b)
:
List.Pairwise r l
theorem
List.Nodup.pairwise_of_set_pairwise
{α : Type u}
{l : List α}
{r : α → α → Prop}
(hl : List.Nodup l)
(h : Set.Pairwise {x : α | x ∈ l} r)
:
List.Pairwise r l
@[simp]
theorem
List.Nodup.pairwise_coe
{α : Type u}
{l : List α}
{r : α → α → Prop}
[IsSymm α r]
(hl : List.Nodup l)
:
Set.Pairwise {a : α | a ∈ l} r ↔ List.Pairwise r l
theorem
List.Nodup.take_eq_filter_mem
{α : Type u}
[DecidableEq α]
{l : List α}
{n : ℕ}
:
List.Nodup l → List.take n l = List.filter (fun (x : α) => decide (x ∈ List.take n l)) l