Documentation

Mathlib.Data.List.Sublists

sublists #

List.Sublists gives a list of all (not necessarily contiguous) sublists of a list.

This file contains basic results on this function.

sublists #

@[simp]
theorem List.sublists'_nil {α : Type u} :
@[simp]
theorem List.sublists'_singleton {α : Type u} (a : α) :
List.sublists' [a] = [[], [a]]
def List.sublists'Aux {α : Type u} (a : α) (r₁ : List (List α)) (r₂ : List (List α)) :
List (List α)

Auxiliary helper definition for sublists'

Equations
Instances For
    theorem List.sublists'Aux_eq_array_foldl {α : Type u} (a : α) (r₁ : List (List α)) (r₂ : List (List α)) :
    List.sublists'Aux a r₁ r₂ = Array.toList (Array.foldl (fun (r : Array (List α)) (l : List α) => Array.push r (a :: l)) (List.toArray r₂) (List.toArray r₁) 0)
    theorem List.sublists'_eq_sublists'Aux {α : Type u} (l : List α) :
    List.sublists' l = List.foldr (fun (a : α) (r : List (List α)) => List.sublists'Aux a r r) [[]] l
    theorem List.sublists'Aux_eq_map {α : Type u} (a : α) (r₁ : List (List α)) (r₂ : List (List α)) :
    List.sublists'Aux a r₁ r₂ = r₂ ++ List.map (List.cons a) r₁
    @[simp]
    theorem List.sublists'_cons {α : Type u} (a : α) (l : List α) :
    @[simp]
    theorem List.mem_sublists' {α : Type u} {s : List α} {t : List α} :
    @[simp]
    @[simp]
    theorem List.sublists_nil {α : Type u} :
    @[simp]
    theorem List.sublists_singleton {α : Type u} (a : α) :
    List.sublists [a] = [[], [a]]
    def List.sublistsAux {α : Type u} (a : α) (r : List (List α)) :
    List (List α)

    Auxiliary helper function for sublists

    Equations
    Instances For
      theorem List.sublistsAux_eq_array_foldl {α : Type u} :
      List.sublistsAux = fun (a : α) (r : List (List α)) => Array.toList (Array.foldl (fun (r : Array (List α)) (l : List α) => Array.push (Array.push r l) (a :: l)) #[] (List.toArray r) 0)
      theorem List.sublistsAux_eq_bind {α : Type u} :
      List.sublistsAux = fun (a : α) (r : List (List α)) => List.bind r fun (l : List α) => [l, a :: l]
      theorem List.sublists_append {α : Type u} (l₁ : List α) (l₂ : List α) :
      List.sublists (l₁ ++ l₂) = do let x ← List.sublists l₂ List.map (fun (x_1 : List α) => x_1 ++ x) (List.sublists l₁)
      theorem List.sublists_cons {α : Type u} (a : α) (l : List α) :
      List.sublists (a :: l) = do let x ← List.sublists l [x, a :: x]
      @[simp]
      theorem List.sublists_concat {α : Type u} (l : List α) (a : α) :
      List.sublists (l ++ [a]) = List.sublists l ++ List.map (fun (x : List α) => x ++ [a]) (List.sublists l)
      @[simp]
      theorem List.mem_sublists {α : Type u} {s : List α} {t : List α} :
      @[simp]

      sublistsLen #

      def List.sublistsLenAux {α : Type u_1} {β : Type u_2} :
      List α(List αβ)List βList β

      Auxiliary function to construct the list of all sublists of a given length. Given an integer n, a list l, a function f and an auxiliary list L, it returns the list made of f applied to all sublists of l of length n, concatenated with L.

      Equations
      Instances For
        def List.sublistsLen {α : Type u_1} (n : ) (l : List α) :
        List (List α)

        The list of all sublists of a list l that are of length n. For instance, for l = [0, 1, 2, 3] and n = 2, one gets [[2, 3], [1, 3], [1, 2], [0, 3], [0, 2], [0, 1]].

        Equations
        Instances For
          theorem List.sublistsLenAux_append {α : Type u_1} {β : Type u_2} {γ : Type u_3} (n : ) (l : List α) (f : List αβ) (g : βγ) (r : List β) (s : List γ) :
          theorem List.sublistsLenAux_eq {α : Type u_1} {β : Type u_2} (l : List α) (n : ) (f : List αβ) (r : List β) :
          theorem List.sublistsLenAux_zero {β : Type v} {α : Type u_1} (l : List α) (f : List αβ) (r : List β) :
          List.sublistsLenAux 0 l f r = f [] :: r
          @[simp]
          theorem List.sublistsLen_zero {α : Type u_1} (l : List α) :
          @[simp]
          theorem List.sublistsLen_succ_nil {α : Type u_1} (n : ) :
          List.sublistsLen (n + 1) [] = []
          @[simp]
          theorem List.sublistsLen_succ_cons {α : Type u_1} (n : ) (a : α) (l : List α) :
          theorem List.sublistsLen_one {α : Type u_1} (l : List α) :
          List.sublistsLen 1 l = List.map (fun (x : α) => [x]) (List.reverse l)
          @[simp]
          theorem List.sublistsLen_sublist_of_sublist {α : Type u_1} (n : ) {l₁ : List α} {l₂ : List α} (h : List.Sublist l₁ l₂) :
          theorem List.length_of_sublistsLen {α : Type u_1} {n : } {l : List α} {l' : List α} :
          theorem List.mem_sublistsLen_self {α : Type u_1} {l : List α} {l' : List α} (h : List.Sublist l' l) :
          @[simp]
          theorem List.mem_sublistsLen {α : Type u_1} {n : } {l : List α} {l' : List α} :
          theorem List.sublistsLen_of_length_lt {α : Type u} {n : } {l : List α} (h : List.length l < n) :
          @[simp]
          theorem List.sublistsLen_length {α : Type u} (l : List α) :
          theorem List.Pairwise.sublists' {α : Type u} {R : ααProp} {l : List α} :
          theorem List.pairwise_sublists {α : Type u} {R : ααProp} {l : List α} (H : List.Pairwise R l) :
          List.Pairwise (fun (l₁ l₂ : List α) => List.Lex R (List.reverse l₁) (List.reverse l₂)) (List.sublists l)
          @[simp]
          theorem List.nodup.of_sublists {α : Type u} {l : List α} :

          Alias of the forward direction of List.nodup_sublists.

          theorem List.nodup.sublists {α : Type u} {l : List α} :

          Alias of the reverse direction of List.nodup_sublists.

          Alias of the forward direction of List.nodup_sublists'.

          theorem List.nodup.sublists' {α : Type u} {l : List α} :

          Alias of the reverse direction of List.nodup_sublists'.

          theorem List.nodup_sublistsLen {α : Type u} (n : ) {l : List α} (h : List.Nodup l) :
          theorem List.sublists_map {α : Type u} {β : Type v} (f : αβ) (l : List α) :
          theorem List.sublists'_map {α : Type u} {β : Type v} (f : αβ) (l : List α) :
          theorem List.revzip_sublists {α : Type u} (l : List α) (l₁ : List α) (l₂ : List α) :
          (l₁, l₂) List.revzip (List.sublists l)List.Perm (l₁ ++ l₂) l
          theorem List.revzip_sublists' {α : Type u} (l : List α) (l₁ : List α) (l₂ : List α) :
          (l₁, l₂) List.revzip (List.sublists' l)List.Perm (l₁ ++ l₂) l