Documentation

Mathlib.Data.List.Zip

zip & unzip #

This file provides results about List.zipWith, List.zip and List.unzip (definitions are in core Lean). zipWith f l₁ l₂ applies f : α → β → γ pointwise to a list l₁ : List α and l₂ : List β. It applies, until one of the lists is exhausted. For example, zipWith f [0, 1, 2] [6.28, 31] = [f 0 6.28, f 1 31]. zip is zipWith applied to Prod.mk. For example, zip [a₁, a₂] [b₁, b₂, b₃] = [(a₁, b₁), (a₂, b₂)]. unzip undoes zip. For example, unzip [(a₁, b₁), (a₂, b₂)] = ([a₁, a₂], [b₁, b₂]).

@[simp]
theorem List.zip_swap {α : Type u} {β : Type u_1} (l₁ : List α) (l₂ : List β) :
List.map Prod.swap (List.zip l₁ l₂) = List.zip l₂ l₁
theorem List.forall_zipWith {α : Type u} {β : Type u_1} {γ : Type u_2} {f : αβγ} {p : γProp} {l₁ : List α} {l₂ : List β} :
List.length l₁ = List.length l₂(List.Forall p (List.zipWith f l₁ l₂) List.Forall₂ (fun (x : α) (y : β) => p (f x y)) l₁ l₂)
theorem List.lt_length_left_of_zipWith {α : Type u} {β : Type u_1} {γ : Type u_2} {f : αβγ} {i : } {l : List α} {l' : List β} (h : i < List.length (List.zipWith f l l')) :
theorem List.lt_length_right_of_zipWith {α : Type u} {β : Type u_1} {γ : Type u_2} {f : αβγ} {i : } {l : List α} {l' : List β} (h : i < List.length (List.zipWith f l l')) :
theorem List.lt_length_left_of_zip {α : Type u} {β : Type u_1} {i : } {l : List α} {l' : List β} (h : i < List.length (List.zip l l')) :
theorem List.lt_length_right_of_zip {α : Type u} {β : Type u_1} {i : } {l : List α} {l' : List β} (h : i < List.length (List.zip l l')) :
theorem List.mem_zip {α : Type u} {β : Type u_1} {a : α} {b : β} {l₁ : List α} {l₂ : List β} :
(a, b) List.zip l₁ l₂a l₁ b l₂
theorem List.unzip_eq_map {α : Type u} {β : Type u_1} (l : List (α × β)) :
List.unzip l = (List.map Prod.fst l, List.map Prod.snd l)
theorem List.unzip_left {α : Type u} {β : Type u_1} (l : List (α × β)) :
(List.unzip l).1 = List.map Prod.fst l
theorem List.unzip_right {α : Type u} {β : Type u_1} (l : List (α × β)) :
(List.unzip l).2 = List.map Prod.snd l
theorem List.unzip_swap {α : Type u} {β : Type u_1} (l : List (α × β)) :
theorem List.zip_unzip {α : Type u} {β : Type u_1} (l : List (α × β)) :
theorem List.unzip_zip_left {α : Type u} {β : Type u_1} {l₁ : List α} {l₂ : List β} :
List.length l₁ List.length l₂(List.unzip (List.zip l₁ l₂)).1 = l₁
theorem List.unzip_zip_right {α : Type u} {β : Type u_1} {l₁ : List α} {l₂ : List β} (h : List.length l₂ List.length l₁) :
(List.unzip (List.zip l₁ l₂)).2 = l₂
theorem List.unzip_zip {α : Type u} {β : Type u_1} {l₁ : List α} {l₂ : List β} (h : List.length l₁ = List.length l₂) :
List.unzip (List.zip l₁ l₂) = (l₁, l₂)
theorem List.zip_of_prod {α : Type u} {β : Type u_1} {l : List α} {l' : List β} {lp : List (α × β)} (hl : List.map Prod.fst lp = l) (hr : List.map Prod.snd lp = l') :
lp = List.zip l l'
theorem List.map_prod_left_eq_zip {α : Type u} {β : Type u_1} {l : List α} (f : αβ) :
List.map (fun (x : α) => (x, f x)) l = List.zip l (List.map f l)
theorem List.map_prod_right_eq_zip {α : Type u} {β : Type u_1} {l : List α} (f : αβ) :
List.map (fun (x : α) => (f x, x)) l = List.zip (List.map f l) l
theorem List.zipWith_comm {α : Type u} {β : Type u_1} {γ : Type u_2} (f : αβγ) (la : List α) (lb : List β) :
List.zipWith f la lb = List.zipWith (fun (b : β) (a : α) => f a b) lb la
theorem List.zipWith_congr {α : Type u} {β : Type u_1} {γ : Type u_2} (f : αβγ) (g : αβγ) (la : List α) (lb : List β) (h : List.Forall₂ (fun (a : α) (b : β) => f a b = g a b) la lb) :
List.zipWith f la lb = List.zipWith g la lb
theorem List.zipWith_comm_of_comm {α : Type u} {β : Type u_1} (f : ααβ) (comm : ∀ (x y : α), f x y = f y x) (l : List α) (l' : List α) :
@[simp]
theorem List.zipWith_same {α : Type u} {δ : Type u_3} (f : ααδ) (l : List α) :
List.zipWith f l l = List.map (fun (a : α) => f a a) l
theorem List.zipWith_zipWith_left {α : Type u} {β : Type u_1} {γ : Type u_2} {δ : Type u_3} {ε : Type u_4} (f : δγε) (g : αβδ) (la : List α) (lb : List β) (lc : List γ) :
List.zipWith f (List.zipWith g la lb) lc = List.zipWith3 (fun (a : α) (b : β) (c : γ) => f (g a b) c) la lb lc
theorem List.zipWith_zipWith_right {α : Type u} {β : Type u_1} {γ : Type u_2} {δ : Type u_3} {ε : Type u_4} (f : αδε) (g : βγδ) (la : List α) (lb : List β) (lc : List γ) :
List.zipWith f la (List.zipWith g lb lc) = List.zipWith3 (fun (a : α) (b : β) (c : γ) => f a (g b c)) la lb lc
@[simp]
theorem List.zipWith3_same_left {α : Type u} {β : Type u_1} {γ : Type u_2} (f : ααβγ) (la : List α) (lb : List β) :
List.zipWith3 f la la lb = List.zipWith (fun (a : α) (b : β) => f a a b) la lb
@[simp]
theorem List.zipWith3_same_mid {α : Type u} {β : Type u_1} {γ : Type u_2} (f : αβαγ) (la : List α) (lb : List β) :
List.zipWith3 f la lb la = List.zipWith (fun (a : α) (b : β) => f a b a) la lb
@[simp]
theorem List.zipWith3_same_right {α : Type u} {β : Type u_1} {γ : Type u_2} (f : αββγ) (la : List α) (lb : List β) :
List.zipWith3 f la lb lb = List.zipWith (fun (a : α) (b : β) => f a b b) la lb
instance List.instIsSymmOpListListZipWith {α : Type u} {β : Type u_1} (f : ααβ) [IsSymmOp α β f] :
Equations
  • =
@[simp]
@[simp]
theorem List.unzip_revzip {α : Type u} (l : List α) :
@[simp]
theorem List.revzip_map_fst {α : Type u} (l : List α) :
List.map Prod.fst (List.revzip l) = l
@[simp]
theorem List.revzip_map_snd {α : Type u} (l : List α) :
theorem List.revzip_swap {α : Type u} (l : List α) :
theorem List.get?_zip_with {α : Type u} {β : Type u_1} {γ : Type u_2} (f : αβγ) (l₁ : List α) (l₂ : List β) (i : ) :
List.get? (List.zipWith f l₁ l₂) i = Option.bind (Option.map f (List.get? l₁ i)) fun (g : βγ) => Option.map g (List.get? l₂ i)
theorem List.get?_zip_with_eq_some {α : Type u_5} {β : Type u_6} {γ : Type u_7} (f : αβγ) (l₁ : List α) (l₂ : List β) (z : γ) (i : ) :
List.get? (List.zipWith f l₁ l₂) i = some z ∃ (x : α), ∃ (y : β), List.get? l₁ i = some x List.get? l₂ i = some y f x y = z
theorem List.get?_zip_eq_some {α : Type u} {β : Type u_1} (l₁ : List α) (l₂ : List β) (z : α × β) (i : ) :
List.get? (List.zip l₁ l₂) i = some z List.get? l₁ i = some z.1 List.get? l₂ i = some z.2
@[simp]
theorem List.get_zipWith {α : Type u} {β : Type u_1} {γ : Type u_2} {f : αβγ} {l : List α} {l' : List β} {i : Fin (List.length (List.zipWith f l l'))} :
List.get (List.zipWith f l l') i = f (List.get l { val := i, isLt := }) (List.get l' { val := i, isLt := })
@[simp]
theorem List.nthLe_zipWith {α : Type u} {β : Type u_1} {γ : Type u_2} {f : αβγ} {l : List α} {l' : List β} {i : } {h : i < List.length (List.zipWith f l l')} :
List.nthLe (List.zipWith f l l') i h = f (List.nthLe l i ) (List.nthLe l' i )
@[simp]
theorem List.get_zip {α : Type u} {β : Type u_1} {l : List α} {l' : List β} {i : Fin (List.length (List.zip l l'))} :
List.get (List.zip l l') i = (List.get l { val := i, isLt := }, List.get l' { val := i, isLt := })
@[simp]
theorem List.nthLe_zip {α : Type u} {β : Type u_1} {l : List α} {l' : List β} {i : } {h : i < List.length (List.zip l l')} :
List.nthLe (List.zip l l') i h = (List.nthLe l i , List.nthLe l' i )
theorem List.mem_zip_inits_tails {α : Type u} {l : List α} {init : List α} {tail : List α} :
(init, tail) List.zip (List.inits l) (List.tails l) init ++ tail = l
theorem List.map_uncurry_zip_eq_zipWith {α : Type u} {β : Type u_1} {γ : Type u_2} (f : αβγ) (l : List α) (l' : List β) :
@[simp]
theorem List.sum_zipWith_distrib_left {α : Type u} {β : Type u_1} {γ : Type u_5} [Semiring γ] (f : αβγ) (n : γ) (l : List α) (l' : List β) :
List.sum (List.zipWith (fun (x : α) (y : β) => n * f x y) l l') = n * List.sum (List.zipWith f l l')

Operations that can be applied before or after a zip_with #

theorem List.zipWith_distrib_reverse {α : Type u} {β : Type u_1} {γ : Type u_2} (f : αβγ) (l : List α) (l' : List β) (h : List.length l = List.length l') :
theorem List.sum_add_sum_eq_sum_zipWith_add_sum_drop {α : Type u} [AddCommMonoid α] (L : List α) (L' : List α) :
List.sum L + List.sum L' = List.sum (List.zipWith (fun (x x_1 : α) => x + x_1) L L') + List.sum (List.drop (List.length L') L) + List.sum (List.drop (List.length L) L')
abbrev List.sum_add_sum_eq_sum_zipWith_add_sum_drop.match_1 {α : Type u_1} (motive : List αList αProp) :
∀ (x x_1 : List α), (∀ (ys : List α), motive [] ys)(∀ (xs : List α), motive xs [])(∀ (x : α) (xs : List α) (y : α) (ys : List α), motive (x :: xs) (y :: ys))motive x x_1
Equations
  • =
Instances For
    theorem List.prod_mul_prod_eq_prod_zipWith_mul_prod_drop {α : Type u} [CommMonoid α] (L : List α) (L' : List α) :
    List.prod L * List.prod L' = List.prod (List.zipWith (fun (x x_1 : α) => x * x_1) L L') * List.prod (List.drop (List.length L') L) * List.prod (List.drop (List.length L) L')
    theorem List.sum_add_sum_eq_sum_zipWith_of_length_eq {α : Type u} [AddCommMonoid α] (L : List α) (L' : List α) (h : List.length L = List.length L') :
    List.sum L + List.sum L' = List.sum (List.zipWith (fun (x x_1 : α) => x + x_1) L L')
    theorem List.prod_mul_prod_eq_prod_zipWith_of_length_eq {α : Type u} [CommMonoid α] (L : List α) (L' : List α) (h : List.length L = List.length L') :
    List.prod L * List.prod L' = List.prod (List.zipWith (fun (x x_1 : α) => x * x_1) L L')