Multiset.range n
gives {0, 1, ..., n-1}
as a multiset. #
range n
is the multiset lifted from the list range n
,
that is, the set {0, 1, ..., n-1}
.
Equations
- Multiset.range n = ↑(List.range n)
Instances For
@[simp]
theorem
Multiset.range_add
(a : ℕ)
(b : ℕ)
:
Multiset.range (a + b) = Multiset.range a + Multiset.map (fun (x : ℕ) => a + x) (Multiset.range b)
theorem
Multiset.range_disjoint_map_add
(a : ℕ)
(m : Multiset ℕ)
:
Multiset.Disjoint (Multiset.range a) (Multiset.map (fun (x : ℕ) => a + x) m)
theorem
Multiset.range_add_eq_union
(a : ℕ)
(b : ℕ)
:
Multiset.range (a + b) = Multiset.range a ∪ Multiset.map (fun (x : ℕ) => a + x) (Multiset.range b)