theorem
Commute.ofNat_left
{α : Type u_1}
[NonAssocSemiring α]
(n : ℕ)
[Nat.AtLeastTwo n]
(x : α)
:
Commute (OfNat.ofNat n) x
theorem
Commute.ofNat_right
{α : Type u_1}
[NonAssocSemiring α]
(x : α)
(n : ℕ)
[Nat.AtLeastTwo n]
:
Commute x (OfNat.ofNat n)
@[simp]
theorem
SemiconjBy.cast_nat_mul_right
{α : Type u_1}
[Semiring α]
{a : α}
{x : α}
{y : α}
(h : SemiconjBy a x y)
(n : ℕ)
:
SemiconjBy a (↑n * x) (↑n * y)
@[simp]
theorem
SemiconjBy.cast_nat_mul_left
{α : Type u_1}
[Semiring α]
{a : α}
{x : α}
{y : α}
(h : SemiconjBy a x y)
(n : ℕ)
:
SemiconjBy (↑n * a) x y
@[simp]
theorem
SemiconjBy.cast_nat_mul_cast_nat_mul
{α : Type u_1}
[Semiring α]
{a : α}
{x : α}
{y : α}
(h : SemiconjBy a x y)
(m : ℕ)
(n : ℕ)
:
SemiconjBy (↑m * a) (↑n * x) (↑n * y)