Documentation

Mathlib.Data.Nat.Cast.Order

Cast of natural numbers: lemmas about order #

theorem Nat.mono_cast {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] :
Monotone Nat.cast
@[deprecated Nat.mono_cast]
theorem Nat.cast_le_cast {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] {a : } {b : } (h : a b) :
a b
theorem GCongr.natCast_le_natCast {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] {a : } {b : } (h : a b) :
a b
@[simp]
theorem Nat.cast_nonneg' {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] (n : ) :
0 n

See also Nat.cast_nonneg, specialised for an OrderedSemiring.

@[simp]
theorem Nat.cast_nonneg {α : Type u_3} [OrderedSemiring α] (n : ) :
0 n

Specialisation of Nat.cast_nonneg', which seems to be easier for Lean to use.

@[simp]
theorem Nat.ofNat_nonneg' {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] (n : ) [Nat.AtLeastTwo n] :

See also Nat.ofNat_nonneg, specialised for an OrderedSemiring.

@[simp]
theorem Nat.ofNat_nonneg {α : Type u_3} [OrderedSemiring α] (n : ) [Nat.AtLeastTwo n] :

Specialisation of Nat.ofNat_nonneg', which seems to be easier for Lean to use.

@[simp]
theorem Nat.cast_min {α : Type u_3} [LinearOrderedSemiring α] {a : } {b : } :
(min a b) = min a b
@[simp]
theorem Nat.cast_max {α : Type u_3} [LinearOrderedSemiring α] {a : } {b : } :
(max a b) = max a b
theorem Nat.cast_add_one_pos {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [NeZero 1] (n : ) :
0 < n + 1
@[simp]
theorem Nat.cast_pos' {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [NeZero 1] {n : } :
0 < n 0 < n

See also Nat.cast_pos, specialised for an OrderedSemiring.

@[simp]
theorem Nat.cast_pos {α : Type u_3} [OrderedSemiring α] [Nontrivial α] {n : } :
0 < n 0 < n

Specialisation of Nat.cast_pos', which seems to be easier for Lean to use.

@[simp]
theorem Nat.ofNat_pos' {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [NeZero 1] {n : } [Nat.AtLeastTwo n] :

See also Nat.ofNat_pos, specialised for an OrderedSemiring.

@[simp]
theorem Nat.ofNat_pos {α : Type u_3} [OrderedSemiring α] [Nontrivial α] {n : } [Nat.AtLeastTwo n] :

Specialisation of Nat.ofNat_pos', which seems to be easier for Lean to use.

theorem Nat.strictMono_cast {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] :
StrictMono Nat.cast
@[simp]
theorem Nat.castOrderEmbedding_apply {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] :
Nat.castOrderEmbedding = Nat.cast
def Nat.castOrderEmbedding {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] :

Nat.cast : ℕ → α as an OrderEmbedding

Equations
Instances For
    @[simp]
    theorem Nat.cast_le {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {m : } {n : } :
    m n m n
    @[simp]
    theorem Nat.cast_lt {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {m : } {n : } :
    m < n m < n
    @[simp]
    theorem Nat.one_lt_cast {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {n : } :
    1 < n 1 < n
    @[simp]
    theorem Nat.one_le_cast {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {n : } :
    1 n 1 n
    @[simp]
    theorem Nat.cast_lt_one {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {n : } :
    n < 1 n = 0
    @[simp]
    theorem Nat.cast_le_one {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {n : } :
    n 1 n 1
    theorem Nat.ofNat_le {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {m : } {n : } [Nat.AtLeastTwo m] [Nat.AtLeastTwo n] :
    theorem Nat.ofNat_lt {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {m : } {n : } [Nat.AtLeastTwo m] [Nat.AtLeastTwo n] :
    @[simp]
    theorem Nat.ofNat_le_cast {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {m : } {n : } [Nat.AtLeastTwo m] :
    @[simp]
    theorem Nat.ofNat_lt_cast {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {m : } {n : } [Nat.AtLeastTwo m] :
    @[simp]
    theorem Nat.cast_le_ofNat {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {m : } {n : } [Nat.AtLeastTwo n] :
    @[simp]
    theorem Nat.cast_lt_ofNat {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {m : } {n : } [Nat.AtLeastTwo n] :
    @[simp]
    theorem Nat.one_lt_ofNat {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {n : } [Nat.AtLeastTwo n] :
    @[simp]
    theorem Nat.one_le_ofNat {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {n : } [Nat.AtLeastTwo n] :
    @[simp]
    theorem Nat.not_ofNat_le_one {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {n : } [Nat.AtLeastTwo n] :
    @[simp]
    theorem Nat.not_ofNat_lt_one {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] [CharZero α] {n : } [Nat.AtLeastTwo n] :
    @[simp]
    theorem Nat.cast_tsub {α : Type u_1} [CanonicallyOrderedCommSemiring α] [Sub α] [OrderedSub α] [ContravariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (m : ) (n : ) :
    (m - n) = m - n

    A version of Nat.cast_sub that works for ℝ≥0 and ℚ≥0. Note that this proof doesn't work for ℕ∞ and ℝ≥0∞, so we use type-specific lemmas for these types.

    @[simp]
    theorem Nat.abs_cast {α : Type u_1} [LinearOrderedRing α] (a : ) :
    |a| = a
    @[simp]
    instance instNontrivial {α : Type u_1} [AddMonoidWithOne α] [CharZero α] :
    Equations
    • =
    theorem NeZero.nat_of_injective {R : Type u_3} {S : Type u_4} {F : Type u_5} [NonAssocSemiring R] [NonAssocSemiring S] [FunLike F R S] {n : } [h : NeZero n] [RingHomClass F R S] {f : F} (hf : Function.Injective f) :
    NeZero n