The product of two AddMonoidWithOne
s. #
instance
Prod.instAddMonoidWithOne
{α : Type u_1}
{β : Type u_2}
[AddMonoidWithOne α]
[AddMonoidWithOne β]
:
AddMonoidWithOne (α × β)
Equations
- Prod.instAddMonoidWithOne = let __src := Prod.instAddMonoid; let __src_1 := Prod.instOne; AddMonoidWithOne.mk ⋯ ⋯
@[simp]
theorem
Prod.fst_natCast
{α : Type u_1}
{β : Type u_2}
[AddMonoidWithOne α]
[AddMonoidWithOne β]
(n : ℕ)
:
(↑n).1 = ↑n
@[simp]
theorem
Prod.fst_ofNat
{α : Type u_1}
{β : Type u_2}
[AddMonoidWithOne α]
[AddMonoidWithOne β]
(n : ℕ)
[Nat.AtLeastTwo n]
:
(OfNat.ofNat n).1 = OfNat.ofNat n
@[simp]
theorem
Prod.snd_natCast
{α : Type u_1}
{β : Type u_2}
[AddMonoidWithOne α]
[AddMonoidWithOne β]
(n : ℕ)
:
(↑n).2 = ↑n
@[simp]
theorem
Prod.snd_ofNat
{α : Type u_1}
{β : Type u_2}
[AddMonoidWithOne α]
[AddMonoidWithOne β]
(n : ℕ)
[Nat.AtLeastTwo n]
:
(OfNat.ofNat n).2 = OfNat.ofNat n