Prime numbers #
This file deals with the factors of natural numbers.
Important declarations #
Nat.factors n
: the prime factorization ofn
Nat.factors_unique
: uniqueness of the prime factorisation
factors n
is the prime factorization of n
, listed in increasing order.
Equations
- Nat.factors 0 = []
- Nat.factors 1 = []
- Nat.factors (Nat.succ (Nat.succ k)) = let m := Nat.minFac (k + 2); let_fun this := ⋯; m :: Nat.factors ((k + 2) / m)
Instances For
theorem
Nat.factors_chain
{n : ℕ}
{a : ℕ}
:
(∀ (p : ℕ), Nat.Prime p → p ∣ n → a ≤ p) → List.Chain (fun (x x_1 : ℕ) => x ≤ x_1) a (Nat.factors n)
theorem
Nat.factors_add_two
(n : ℕ)
:
Nat.factors (n + 2) = Nat.minFac (n + 2) :: Nat.factors ((n + 2) / Nat.minFac (n + 2))
factors
can be constructed inductively by extracting minFac
, for sufficiently large n
.
theorem
Nat.eq_of_perm_factors
{a : ℕ}
{b : ℕ}
(ha : a ≠ 0)
(hb : b ≠ 0)
(h : List.Perm (Nat.factors a) (Nat.factors b))
:
a = b
theorem
Nat.mem_factors_iff_dvd
{n : ℕ}
{p : ℕ}
(hn : n ≠ 0)
(hp : Nat.Prime p)
:
p ∈ Nat.factors n ↔ p ∣ n
theorem
Nat.factors_unique
{n : ℕ}
{l : List ℕ}
(h₁ : List.prod l = n)
(h₂ : ∀ p ∈ l, Nat.Prime p)
:
List.Perm l (Nat.factors n)
Fundamental theorem of arithmetic
theorem
Nat.Prime.factors_pow
{p : ℕ}
(hp : Nat.Prime p)
(n : ℕ)
:
Nat.factors (p ^ n) = List.replicate n p
theorem
Nat.eq_prime_pow_of_unique_prime_dvd
{n : ℕ}
{p : ℕ}
(hpos : n ≠ 0)
(h : ∀ {d : ℕ}, Nat.Prime d → d ∣ n → d = p)
:
n = p ^ List.length (Nat.factors n)
theorem
Nat.perm_factors_mul
{a : ℕ}
{b : ℕ}
(ha : a ≠ 0)
(hb : b ≠ 0)
:
List.Perm (Nat.factors (a * b)) (Nat.factors a ++ Nat.factors b)
For positive a
and b
, the prime factors of a * b
are the union of those of a
and b
theorem
Nat.perm_factors_mul_of_coprime
{a : ℕ}
{b : ℕ}
(hab : Nat.Coprime a b)
:
List.Perm (Nat.factors (a * b)) (Nat.factors a ++ Nat.factors b)
For coprime a
and b
, the prime factors of a * b
are the union of those of a
and b
theorem
Nat.factors_sublist_right
{n : ℕ}
{k : ℕ}
(h : k ≠ 0)
:
List.Sublist (Nat.factors n) (Nat.factors (n * k))
theorem
Nat.factors_sublist_of_dvd
{n : ℕ}
{k : ℕ}
(h : n ∣ k)
(h' : k ≠ 0)
:
List.Sublist (Nat.factors n) (Nat.factors k)
theorem
Nat.factors_subset_of_dvd
{n : ℕ}
{k : ℕ}
(h : n ∣ k)
(h' : k ≠ 0)
:
Nat.factors n ⊆ Nat.factors k
theorem
Nat.dvd_of_factors_subperm
{a : ℕ}
{b : ℕ}
(ha : a ≠ 0)
(h : List.Subperm (Nat.factors a) (Nat.factors b))
:
a ∣ b
theorem
Nat.mem_factors_mul
{a : ℕ}
{b : ℕ}
(ha : a ≠ 0)
(hb : b ≠ 0)
{p : ℕ}
:
p ∈ Nat.factors (a * b) ↔ p ∈ Nat.factors a ∨ p ∈ Nat.factors b
theorem
Nat.coprime_factors_disjoint
{a : ℕ}
{b : ℕ}
(hab : Nat.Coprime a b)
:
List.Disjoint (Nat.factors a) (Nat.factors b)
The sets of factors of coprime a
and b
are disjoint
theorem
Nat.mem_factors_mul_of_coprime
{a : ℕ}
{b : ℕ}
(hab : Nat.Coprime a b)
(p : ℕ)
:
p ∈ Nat.factors (a * b) ↔ p ∈ Nat.factors a ∪ Nat.factors b
theorem
Nat.mem_factors_mul_left
{p : ℕ}
{a : ℕ}
{b : ℕ}
(hpa : p ∈ Nat.factors a)
(hb : b ≠ 0)
:
p ∈ Nat.factors (a * b)
If p
is a prime factor of a
then p
is also a prime factor of a * b
for any b > 0
theorem
Nat.mem_factors_mul_right
{p : ℕ}
{a : ℕ}
{b : ℕ}
(hpb : p ∈ Nat.factors b)
(ha : a ≠ 0)
:
p ∈ Nat.factors (a * b)
If p
is a prime factor of b
then p
is also a prime factor of a * b
for any a > 0