Casts of rational numbers into characteristic zero fields (or division rings). #
@[simp]
theorem
Rat.cast_injective
{α : Type u_3}
[DivisionRing α]
[CharZero α]
:
Function.Injective Rat.cast
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Coercion ℚ → α
as a RingHom
.
Equations
- Rat.castHom α = { toMonoidHom := { toOneHom := { toFun := Rat.cast, map_one' := ⋯ }, map_mul' := ⋯ }, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Rat.cast_mk
{α : Type u_3}
[DivisionRing α]
[CharZero α]
(a : ℤ)
(b : ℤ)
:
↑(Rat.divInt a b) = ↑a / ↑b
@[simp]