Real conjugate exponents #
This file defines conjugate exponents in ℝ
and ℝ≥0
. Real numbers p
and q
are conjugate if
they are both greater than 1
and satisfy p⁻¹ + q⁻¹ = 1
. This property shows up often in
analysis, especially when dealing with L^p
spaces.
Main declarations #
Real.IsConjExponent
: Predicate for two real numbers to be conjugate.Real.conjExponent
: Conjugate exponent of a real number.NNReal.IsConjExponent
: Predicate for two nonnegative real numbers to be conjugate.NNReal.conjExponent
: Conjugate exponent of a nonnegative real number.
TODO #
- Eradicate the
1 / p
spelling in lemmas. - Do we want an
ℝ≥0∞
version?
The conjugate exponent of p
is q = p/(p-1)
, so that 1/p + 1/q = 1
.
Equations
- Real.conjExponent p = p / (p - 1)
Instances For
theorem
Real.IsConjExponent.conjExponent_eq
{p : ℝ}
{q : ℝ}
(h : Real.IsConjExponent p q)
:
Real.conjExponent p = q
theorem
Real.IsConjExponent.inv_add_inv_conj_ennreal
{p : ℝ}
{q : ℝ}
(h : Real.IsConjExponent p q)
:
(ENNReal.ofReal p)⁻¹ + (ENNReal.ofReal q)⁻¹ = 1
theorem
Real.IsConjExponent.inv_one_sub_inv
{a : ℝ}
(ha₀ : 0 < a)
(ha₁ : a < 1)
:
Real.IsConjExponent a⁻¹ (1 - a)⁻¹
theorem
Real.IsConjExponent.one_sub_inv_inv
{a : ℝ}
(ha₀ : 0 < a)
(ha₁ : a < 1)
:
Real.IsConjExponent (1 - a)⁻¹ a⁻¹
theorem
Real.isConjExponent_iff_eq_conjExponent
{p : ℝ}
{q : ℝ}
(hp : 1 < p)
:
Real.IsConjExponent p q ↔ q = p / (p - 1)
Two nonnegative real exponents p, q
are conjugate if they are > 1
and satisfy the equality
1/p + 1/q = 1
. This condition shows up in many theorems in analysis, notably related to L^p
norms.
- one_lt : 1 < p
Instances For
The conjugate exponent of p
is q = p/(p-1)
, so that 1/p + 1/q = 1
.
Equations
- NNReal.conjExponent p = p / (p - 1)
Instances For
@[simp]
theorem
NNReal.isConjExponent_coe
{p : NNReal}
{q : NNReal}
:
Real.IsConjExponent ↑p ↑q ↔ p.IsConjExponent q
theorem
NNReal.IsConjExponent.coe
{p : NNReal}
{q : NNReal}
:
p.IsConjExponent q → Real.IsConjExponent ↑p ↑q
Alias of the reverse direction of NNReal.isConjExponent_coe
.
theorem
NNReal.IsConjExponent.conjExponent_eq
{p : NNReal}
{q : NNReal}
(h : p.IsConjExponent q)
:
NNReal.conjExponent p = q
theorem
NNReal.IsConjExponent.symm
{p : NNReal}
{q : NNReal}
(h : p.IsConjExponent q)
:
q.IsConjExponent p
theorem
NNReal.IsConjExponent.conjExponent
{p : NNReal}
(h : 1 < p)
:
p.IsConjExponent (NNReal.conjExponent p)
theorem
Real.IsConjExponent.toNNReal
{p : ℝ}
{q : ℝ}
(hpq : Real.IsConjExponent p q)
:
(Real.toNNReal p).IsConjExponent (Real.toNNReal q)