Pi instances for multiplicative actions #
This file defines instances for MulAction
and related structures on Pi
types.
See also #
GroupTheory.GroupAction.option
GroupTheory.GroupAction.prod
GroupTheory.GroupAction.sigma
GroupTheory.GroupAction.sum
instance
Pi.vaddAssocClass
{I : Type u}
{f : I → Type v}
{α : Type u_1}
{β : Type u_2}
[VAdd α β]
[(i : I) → VAdd β (f i)]
[(i : I) → VAdd α (f i)]
[∀ (i : I), VAddAssocClass α β (f i)]
:
VAddAssocClass α β ((i : I) → f i)
Equations
- ⋯ = ⋯
instance
Pi.isScalarTower
{I : Type u}
{f : I → Type v}
{α : Type u_1}
{β : Type u_2}
[SMul α β]
[(i : I) → SMul β (f i)]
[(i : I) → SMul α (f i)]
[∀ (i : I), IsScalarTower α β (f i)]
:
IsScalarTower α β ((i : I) → f i)
Equations
- ⋯ = ⋯
instance
Pi.vaddAssocClass'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{α : Type u_2}
[(i : I) → VAdd α (f i)]
[(i : I) → VAdd (f i) (g i)]
[(i : I) → VAdd α (g i)]
[∀ (i : I), VAddAssocClass α (f i) (g i)]
:
VAddAssocClass α ((i : I) → f i) ((i : I) → g i)
Equations
- ⋯ = ⋯
instance
Pi.isScalarTower'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{α : Type u_2}
[(i : I) → SMul α (f i)]
[(i : I) → SMul (f i) (g i)]
[(i : I) → SMul α (g i)]
[∀ (i : I), IsScalarTower α (f i) (g i)]
:
IsScalarTower α ((i : I) → f i) ((i : I) → g i)
Equations
- ⋯ = ⋯
instance
Pi.vaddAssocClass''
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{h : I → Type u_2}
[(i : I) → VAdd (f i) (g i)]
[(i : I) → VAdd (g i) (h i)]
[(i : I) → VAdd (f i) (h i)]
[∀ (i : I), VAddAssocClass (f i) (g i) (h i)]
:
VAddAssocClass ((i : I) → f i) ((i : I) → g i) ((i : I) → h i)
Equations
- ⋯ = ⋯
instance
Pi.isScalarTower''
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{h : I → Type u_2}
[(i : I) → SMul (f i) (g i)]
[(i : I) → SMul (g i) (h i)]
[(i : I) → SMul (f i) (h i)]
[∀ (i : I), IsScalarTower (f i) (g i) (h i)]
:
IsScalarTower ((i : I) → f i) ((i : I) → g i) ((i : I) → h i)
Equations
- ⋯ = ⋯
instance
Pi.vaddCommClass
{I : Type u}
{f : I → Type v}
{α : Type u_1}
{β : Type u_2}
[(i : I) → VAdd α (f i)]
[(i : I) → VAdd β (f i)]
[∀ (i : I), VAddCommClass α β (f i)]
:
VAddCommClass α β ((i : I) → f i)
Equations
- ⋯ = ⋯
instance
Pi.smulCommClass
{I : Type u}
{f : I → Type v}
{α : Type u_1}
{β : Type u_2}
[(i : I) → SMul α (f i)]
[(i : I) → SMul β (f i)]
[∀ (i : I), SMulCommClass α β (f i)]
:
SMulCommClass α β ((i : I) → f i)
Equations
- ⋯ = ⋯
instance
Pi.vaddCommClass'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{α : Type u_2}
[(i : I) → VAdd α (g i)]
[(i : I) → VAdd (f i) (g i)]
[∀ (i : I), VAddCommClass α (f i) (g i)]
:
VAddCommClass α ((i : I) → f i) ((i : I) → g i)
Equations
- ⋯ = ⋯
instance
Pi.smulCommClass'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{α : Type u_2}
[(i : I) → SMul α (g i)]
[(i : I) → SMul (f i) (g i)]
[∀ (i : I), SMulCommClass α (f i) (g i)]
:
SMulCommClass α ((i : I) → f i) ((i : I) → g i)
Equations
- ⋯ = ⋯
instance
Pi.vaddCommClass''
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{h : I → Type u_2}
[(i : I) → VAdd (g i) (h i)]
[(i : I) → VAdd (f i) (h i)]
[∀ (i : I), VAddCommClass (f i) (g i) (h i)]
:
VAddCommClass ((i : I) → f i) ((i : I) → g i) ((i : I) → h i)
Equations
- ⋯ = ⋯
instance
Pi.smulCommClass''
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{h : I → Type u_2}
[(i : I) → SMul (g i) (h i)]
[(i : I) → SMul (f i) (h i)]
[∀ (i : I), SMulCommClass (f i) (g i) (h i)]
:
SMulCommClass ((i : I) → f i) ((i : I) → g i) ((i : I) → h i)
Equations
- ⋯ = ⋯
instance
Pi.isCentralVAdd
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[(i : I) → VAdd α (f i)]
[(i : I) → VAdd αᵃᵒᵖ (f i)]
[∀ (i : I), IsCentralVAdd α (f i)]
:
IsCentralVAdd α ((i : I) → f i)
Equations
- ⋯ = ⋯
instance
Pi.isCentralScalar
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[(i : I) → SMul α (f i)]
[(i : I) → SMul αᵐᵒᵖ (f i)]
[∀ (i : I), IsCentralScalar α (f i)]
:
IsCentralScalar α ((i : I) → f i)
Equations
- ⋯ = ⋯
theorem
Pi.faithfulVAdd_at
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[(i : I) → VAdd α (f i)]
[∀ (i : I), Nonempty (f i)]
(i : I)
[FaithfulVAdd α (f i)]
:
FaithfulVAdd α ((i : I) → f i)
If f i
has a faithful additive action for a given i
, then
so does Π i, f i
. This is not an instance as i
cannot be inferred
theorem
Pi.faithfulSMul_at
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[(i : I) → SMul α (f i)]
[∀ (i : I), Nonempty (f i)]
(i : I)
[FaithfulSMul α (f i)]
:
FaithfulSMul α ((i : I) → f i)
If f i
has a faithful scalar action for a given i
, then so does Π i, f i
. This is
not an instance as i
cannot be inferred.
instance
Pi.faithfulVAdd
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[Nonempty I]
[(i : I) → VAdd α (f i)]
[∀ (i : I), Nonempty (f i)]
[∀ (i : I), FaithfulVAdd α (f i)]
:
FaithfulVAdd α ((i : I) → f i)
Equations
- ⋯ = ⋯
instance
Pi.faithfulSMul
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[Nonempty I]
[(i : I) → SMul α (f i)]
[∀ (i : I), Nonempty (f i)]
[∀ (i : I), FaithfulSMul α (f i)]
:
FaithfulSMul α ((i : I) → f i)
Equations
- ⋯ = ⋯
instance
Pi.addAction
{I : Type u}
{f : I → Type v}
(α : Type u_1)
{m : AddMonoid α}
[(i : I) → AddAction α (f i)]
:
AddAction α ((i : I) → f i)
Equations
- Pi.addAction α = AddAction.mk ⋯ ⋯
instance
Pi.mulAction
{I : Type u}
{f : I → Type v}
(α : Type u_1)
{m : Monoid α}
[(i : I) → MulAction α (f i)]
:
MulAction α ((i : I) → f i)
Equations
- Pi.mulAction α = MulAction.mk ⋯ ⋯
instance
Pi.addAction'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{m : (i : I) → AddMonoid (f i)}
[(i : I) → AddAction (f i) (g i)]
:
AddAction ((i : I) → f i) ((i : I) → g i)
Equations
- Pi.addAction' = AddAction.mk ⋯ ⋯
instance
Pi.mulAction'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{m : (i : I) → Monoid (f i)}
[(i : I) → MulAction (f i) (g i)]
:
MulAction ((i : I) → f i) ((i : I) → g i)
Equations
- Pi.mulAction' = MulAction.mk ⋯ ⋯
instance
Pi.smulZeroClass
{I : Type u}
{f : I → Type v}
(α : Type u_1)
{n : (i : I) → Zero (f i)}
[(i : I) → SMulZeroClass α (f i)]
:
SMulZeroClass α ((i : I) → f i)
Equations
instance
Pi.smulZeroClass'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{n : (i : I) → Zero (g i)}
[(i : I) → SMulZeroClass (f i) (g i)]
:
SMulZeroClass ((i : I) → f i) ((i : I) → g i)
Equations
- Pi.smulZeroClass' = SMulZeroClass.mk ⋯
instance
Pi.distribSMul
{I : Type u}
{f : I → Type v}
(α : Type u_1)
{n : (i : I) → AddZeroClass (f i)}
[(i : I) → DistribSMul α (f i)]
:
DistribSMul α ((i : I) → f i)
Equations
instance
Pi.distribSMul'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{n : (i : I) → AddZeroClass (g i)}
[(i : I) → DistribSMul (f i) (g i)]
:
DistribSMul ((i : I) → f i) ((i : I) → g i)
Equations
- Pi.distribSMul' = DistribSMul.mk ⋯
instance
Pi.distribMulAction
{I : Type u}
{f : I → Type v}
(α : Type u_1)
{m : Monoid α}
{n : (i : I) → AddMonoid (f i)}
[(i : I) → DistribMulAction α (f i)]
:
DistribMulAction α ((i : I) → f i)
Equations
- Pi.distribMulAction α = let __src := Pi.mulAction α; let __src_1 := Pi.distribSMul α; DistribMulAction.mk ⋯ ⋯
instance
Pi.distribMulAction'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{m : (i : I) → Monoid (f i)}
{n : (i : I) → AddMonoid (g i)}
[(i : I) → DistribMulAction (f i) (g i)]
:
DistribMulAction ((i : I) → f i) ((i : I) → g i)
Equations
- Pi.distribMulAction' = let __src := Pi.mulAction'; let __src_1 := Pi.distribSMul'; DistribMulAction.mk ⋯ ⋯
theorem
Pi.single_smul
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[Monoid α]
[(i : I) → AddMonoid (f i)]
[(i : I) → DistribMulAction α (f i)]
[DecidableEq I]
(i : I)
(r : α)
(x : f i)
:
theorem
Pi.single_smul'
{I : Type u}
{α : Type u_1}
{β : Type u_2}
[Monoid α]
[AddMonoid β]
[DistribMulAction α β]
[DecidableEq I]
(i : I)
(r : α)
(x : β)
:
A version of Pi.single_smul
for non-dependent functions. It is useful in cases where Lean
fails to apply Pi.single_smul
.
theorem
Pi.single_smul₀
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
[(i : I) → MonoidWithZero (f i)]
[(i : I) → AddMonoid (g i)]
[(i : I) → DistribMulAction (f i) (g i)]
[DecidableEq I]
(i : I)
(r : f i)
(x : g i)
:
instance
Pi.mulDistribMulAction
{I : Type u}
{f : I → Type v}
(α : Type u_1)
{m : Monoid α}
{n : (i : I) → Monoid (f i)}
[(i : I) → MulDistribMulAction α (f i)]
:
MulDistribMulAction α ((i : I) → f i)
Equations
- Pi.mulDistribMulAction α = let __src := Pi.mulAction α; MulDistribMulAction.mk ⋯ ⋯
instance
Pi.mulDistribMulAction'
{I : Type u}
{f : I → Type v}
{g : I → Type u_1}
{m : (i : I) → Monoid (f i)}
{n : (i : I) → Monoid (g i)}
[(i : I) → MulDistribMulAction (f i) (g i)]
:
MulDistribMulAction ((i : I) → f i) ((i : I) → g i)
Equations
- Pi.mulDistribMulAction' = MulDistribMulAction.mk ⋯ ⋯
instance
Function.vaddCommClass
{ι : Type u_1}
{α : Type u_2}
{β : Type u_3}
{M : Type u_4}
[VAdd α M]
[VAdd β M]
[VAddCommClass α β M]
:
VAddCommClass α β (ι → M)
Non-dependent version of Pi.vaddCommClass
. Lean gets confused by the dependent
instance if this is not present.
Equations
- ⋯ = ⋯
instance
Function.smulCommClass
{ι : Type u_1}
{α : Type u_2}
{β : Type u_3}
{M : Type u_4}
[SMul α M]
[SMul β M]
[SMulCommClass α β M]
:
SMulCommClass α β (ι → M)
Non-dependent version of Pi.smulCommClass
. Lean gets confused by the dependent instance if
this is not present.
Equations
- ⋯ = ⋯
theorem
Function.update_vadd
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[(i : I) → VAdd α (f i)]
[DecidableEq I]
(c : α)
(f₁ : (i : I) → f i)
(i : I)
(x₁ : f i)
:
Function.update (c +ᵥ f₁) i (c +ᵥ x₁) = c +ᵥ Function.update f₁ i x₁
theorem
Function.update_smul
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[(i : I) → SMul α (f i)]
[DecidableEq I]
(c : α)
(f₁ : (i : I) → f i)
(i : I)
(x₁ : f i)
:
Function.update (c • f₁) i (c • x₁) = c • Function.update f₁ i x₁
theorem
Set.piecewise_vadd
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[(i : I) → VAdd α (f i)]
(s : Set I)
[(i : I) → Decidable (i ∈ s)]
(c : α)
(f₁ : (i : I) → f i)
(g₁ : (i : I) → f i)
:
Set.piecewise s (c +ᵥ f₁) (c +ᵥ g₁) = c +ᵥ Set.piecewise s f₁ g₁
theorem
Set.piecewise_smul
{I : Type u}
{f : I → Type v}
{α : Type u_1}
[(i : I) → SMul α (f i)]
(s : Set I)
[(i : I) → Decidable (i ∈ s)]
(c : α)
(f₁ : (i : I) → f i)
(g₁ : (i : I) → f i)
:
Set.piecewise s (c • f₁) (c • g₁) = c • Set.piecewise s f₁ g₁
theorem
Function.extend_vadd
{R : Type u_1}
{α : Type u_2}
{β : Type u_3}
{γ : Type u_4}
[VAdd R γ]
(r : R)
(f : α → β)
(g : α → γ)
(e : β → γ)
:
Function.extend f (r +ᵥ g) (r +ᵥ e) = r +ᵥ Function.extend f g e
theorem
Function.extend_smul
{R : Type u_1}
{α : Type u_2}
{β : Type u_3}
{γ : Type u_4}
[SMul R γ]
(r : R)
(f : α → β)
(g : α → γ)
(e : β → γ)
:
Function.extend f (r • g) (r • e) = r • Function.extend f g e