Documentation

Mathlib.GroupTheory.MonoidLocalization

Localizations of commutative monoids #

Localizing a commutative ring at one of its submonoids does not rely on the ring's addition, so we can generalize localizations to commutative monoids.

We characterize the localization of a commutative monoid M at a submonoid S up to isomorphism; that is, a commutative monoid N is the localization of M at S iff we can find a monoid homomorphism f : M →* N satisfying 3 properties:

  1. For all y ∈ S, f y is a unit;
  2. For all z : N, there exists (x, y) : M × S such that z * f y = f x;
  3. For all x, y : M such that f x = f y, there exists c ∈ S such that x * c = y * c. (The converse is a consequence of 1.)

Given such a localization map f : M →* N, we can define the surjection Submonoid.LocalizationMap.mk' sending (x, y) : M × S to f x * (f y)⁻¹, and Submonoid.LocalizationMap.lift, the homomorphism from N induced by a homomorphism from M which maps elements of S to invertible elements of the codomain. Similarly, given commutative monoids P, Q, a submonoid T of P and a localization map for T from P to Q, then a homomorphism g : M →* P such that g(S) ⊆ T induces a homomorphism of localizations, LocalizationMap.map, from N to Q. We treat the special case of localizing away from an element in the sections AwayMap and Away.

We also define the quotient of M × S by the unique congruence relation (equivalence relation preserving a binary operation) r such that for any other congruence relation s on M × S satisfying '∀ y ∈ S, (1, 1) ∼ (y, y) under s', we have that (x₁, y₁) ∼ (x₂, y₂) by s whenever (x₁, y₁) ∼ (x₂, y₂) by r. We show this relation is equivalent to the standard localization relation. This defines the localization as a quotient type, Localization, but the majority of subsequent lemmas in the file are given in terms of localizations up to isomorphism, using maps which satisfy the characteristic predicate.

The Grothendieck group construction corresponds to localizing at the top submonoid, namely making every element invertible.

Implementation notes #

In maths it is natural to reason up to isomorphism, but in Lean we cannot naturally rewrite one structure with an isomorphic one; one way around this is to isolate a predicate characterizing a structure up to isomorphism, and reason about things that satisfy the predicate.

The infimum form of the localization congruence relation is chosen as 'canonical' here, since it shortens some proofs.

To apply a localization map f as a function, we use f.toMap, as coercions don't work well for this structure.

To reason about the localization as a quotient type, use mk_eq_monoidOf_mk' and associated lemmas. These show the quotient map mk : M → S → Localization S equals the surjection LocalizationMap.mk' induced by the map Localization.monoidOf : Submonoid.LocalizationMap S (Localization S) (where of establishes the localization as a quotient type satisfies the characteristic predicate). The lemma mk_eq_monoidOf_mk' hence gives you access to the results in the rest of the file, which are about the LocalizationMap.mk' induced by any localization map.

TODO #

Tags #

localization, monoid localization, quotient monoid, congruence relation, characteristic predicate, commutative monoid, grothendieck group

structure AddSubmonoid.LocalizationMap {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) (N : Type u_2) [AddCommMonoid N] extends AddMonoidHom :
Type (max u_1 u_2)

The type of AddMonoid homomorphisms satisfying the characteristic predicate: if f : M →+ N satisfies this predicate, then N is isomorphic to the localization of M at S.

  • toFun : MN
  • map_zero' : self.toFun 0 = 0
  • map_add' : ∀ (x y : M), self.toFun (x + y) = self.toFun x + self.toFun y
  • map_add_units' : ∀ (y : S), IsAddUnit (self.toFun y)
  • surj' : ∀ (z : N), ∃ (x : M × S), z + self.toFun x.2 = self.toFun x.1
  • exists_of_eq : ∀ (x y : M), self.toFun x = self.toFun y∃ (c : S), c + x = c + y
Instances For
    structure Submonoid.LocalizationMap {M : Type u_1} [CommMonoid M] (S : Submonoid M) (N : Type u_2) [CommMonoid N] extends MonoidHom :
    Type (max u_1 u_2)

    The type of monoid homomorphisms satisfying the characteristic predicate: if f : M →* N satisfies this predicate, then N is isomorphic to the localization of M at S.

    • toFun : MN
    • map_one' : self.toFun 1 = 1
    • map_mul' : ∀ (x y : M), self.toFun (x * y) = self.toFun x * self.toFun y
    • map_units' : ∀ (y : S), IsUnit (self.toFun y)
    • surj' : ∀ (z : N), ∃ (x : M × S), z * self.toFun x.2 = self.toFun x.1
    • exists_of_eq : ∀ (x y : M), self.toFun x = self.toFun y∃ (c : S), c * x = c * y
    Instances For
      def AddLocalization.r {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) :
      AddCon (M × S)

      The congruence relation on M × S, M an AddCommMonoid and S an add_submonoid of M, whose quotient is the localization of M at S, defined as the unique congruence relation on M × S such that for any other congruence relation s on M × S where for all y ∈ S, (0, 0) ∼ (y, y) under s, we have that (x₁, y₁) ∼ (x₂, y₂) by r implies (x₁, y₁) ∼ (x₂, y₂) by s.

      Equations
      Instances For
        def Localization.r {M : Type u_1} [CommMonoid M] (S : Submonoid M) :
        Con (M × S)

        The congruence relation on M × S, M a CommMonoid and S a submonoid of M, whose quotient is the localization of M at S, defined as the unique congruence relation on M × S such that for any other congruence relation s on M × S where for all y ∈ S, (1, 1) ∼ (y, y) under s, we have that (x₁, y₁) ∼ (x₂, y₂) by r implies (x₁, y₁) ∼ (x₂, y₂) by s.

        Equations
        Instances For
          def AddLocalization.r' {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) :
          AddCon (M × S)

          An alternate form of the congruence relation on M × S, M a CommMonoid and S a submonoid of M, whose quotient is the localization of M at S.

          Equations
          • AddLocalization.r' S = { toSetoid := { r := fun (a b : M × S) => ∃ (c : S), c + (b.2 + a.1) = c + (a.2 + b.1), iseqv := }, add' := }
          Instances For
            theorem AddLocalization.r'.proof_1 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) :
            Equivalence fun (a b : M × S) => ∃ (c : S), c + (b.2 + a.1) = c + (a.2 + b.1)
            abbrev AddLocalization.r'.match_1 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) :
            ∀ {x y : M × S} (motive : (∃ (c : S), c + (y.2 + x.1) = c + (x.2 + y.1))Prop) (x_1 : ∃ (c : S), c + (y.2 + x.1) = c + (x.2 + y.1)), (∀ (c : S) (hc : c + (y.2 + x.1) = c + (x.2 + y.1)), motive )motive x_1
            Equations
            • =
            Instances For
              theorem AddLocalization.r'.proof_2 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) {a : M × S} {b : M × S} {c : M × S} {d : M × S} :
              Setoid.r a bSetoid.r c dSetoid.r (a + c) (b + d)
              def Localization.r' {M : Type u_1} [CommMonoid M] (S : Submonoid M) :
              Con (M × S)

              An alternate form of the congruence relation on M × S, M a CommMonoid and S a submonoid of M, whose quotient is the localization of M at S.

              Equations
              • Localization.r' S = { toSetoid := { r := fun (a b : M × S) => ∃ (c : S), c * (b.2 * a.1) = c * (a.2 * b.1), iseqv := }, mul' := }
              Instances For
                abbrev AddLocalization.r_eq_r'.match_1 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) (p : M) (q : S) (x : M) (y : S) (motive : (AddLocalization.r' S) (p, q) (x, y)Prop) :
                ∀ (x_1 : (AddLocalization.r' S) (p, q) (x, y)), (∀ (t : S) (ht : t + ((x, y).2 + (p, q).1) = t + ((p, q).2 + (x, y).1)), motive )motive x_1
                Equations
                • =
                Instances For
                  abbrev AddLocalization.r_eq_r'.match_3 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) :
                  ∀ (x : M × S) (motive : (x_1 : M × S) → (AddLocalization.r' S) x_1 xProp) (x_1 : M × S) (x_2 : (AddLocalization.r' S) x_1 x), (∀ (p : M) (q : S) (x : (AddLocalization.r' S) (p, q) x), motive (p, q) x)motive x_1 x_2
                  Equations
                  • =
                  Instances For

                    The additive congruence relation used to localize an AddCommMonoid at a submonoid can be expressed equivalently as an infimum (see AddLocalization.r) or explicitly (see AddLocalization.r').

                    abbrev AddLocalization.r_eq_r'.match_2 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) (p : M) (q : S) (motive : (x : M × S) → (AddLocalization.r' S) (p, q) xProp) :
                    ∀ (x : M × S) (x_1 : (AddLocalization.r' S) (p, q) x), (∀ (x : M) (y : S) (x_2 : (AddLocalization.r' S) (p, q) (x, y)), motive (x, y) x_2)motive x x_1
                    Equations
                    • =
                    Instances For

                      The congruence relation used to localize a CommMonoid at a submonoid can be expressed equivalently as an infimum (see Localization.r) or explicitly (see Localization.r').

                      theorem AddLocalization.r_iff_exists {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {x : M × S} {y : M × S} :
                      (AddLocalization.r S) x y ∃ (c : S), c + (y.2 + x.1) = c + (x.2 + y.1)
                      theorem Localization.r_iff_exists {M : Type u_1} [CommMonoid M] {S : Submonoid M} {x : M × S} {y : M × S} :
                      (Localization.r S) x y ∃ (c : S), c * (y.2 * x.1) = c * (x.2 * y.1)
                      def AddLocalization {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) :
                      Type u_1

                      The localization of an AddCommMonoid at one of its submonoids (as a quotient type).

                      Equations
                      Instances For
                        def Localization {M : Type u_1} [CommMonoid M] (S : Submonoid M) :
                        Type u_1

                        The localization of a CommMonoid at one of its submonoids (as a quotient type).

                        Equations
                        Instances For
                          Equations
                          Equations
                          theorem Localization.mul_def {M : Type u_4} [CommMonoid M] (S : Submonoid M) :
                          @[irreducible]

                          Multiplication in a Localization is defined as ⟨a, b⟩ * ⟨c, d⟩ = ⟨a * c, b * d⟩.

                          Equations
                          Instances For

                            Addition in an AddLocalization is defined as ⟨a, b⟩ + ⟨c, d⟩ = ⟨a + c, b + d⟩. Should not be confused with the ring localization counterpart Localization.add, which maps ⟨a, b⟩ + ⟨c, d⟩ to ⟨d * a + b * c, b * d⟩.

                            Addition in an AddLocalization is defined as ⟨a, b⟩ + ⟨c, d⟩ = ⟨a + c, b + d⟩. Should not be confused with the ring localization counterpart Localization.add, which maps ⟨a, b⟩ + ⟨c, d⟩ to ⟨d * a + b * c, b * d⟩.

                            Equations
                            Instances For
                              theorem Localization.one_def {M : Type u_4} [CommMonoid M] (S : Submonoid M) :
                              @[irreducible]

                              The identity element of a Localization is defined as ⟨1, 1⟩.

                              Equations
                              Instances For

                                The identity element of an AddLocalization is defined as ⟨0, 0⟩.

                                Should not be confused with the ring localization counterpart Localization.zero, which is defined as ⟨0, 1⟩.

                                Equations
                                Instances For

                                  The identity element of an AddLocalization is defined as ⟨0, 0⟩.

                                  Should not be confused with the ring localization counterpart Localization.zero, which is defined as ⟨0, 1⟩.

                                  @[irreducible]
                                  def Localization.npow {M : Type u_4} [CommMonoid M] (S : Submonoid M) :

                                  Exponentiation in a Localization is defined as ⟨a, b⟩ ^ n = ⟨a ^ n, b ^ n⟩.

                                  This is a separate irreducible def to ensure the elaborator doesn't waste its time trying to unify some huge recursive definition with itself, but unfolded one step less.

                                  Equations
                                  Instances For
                                    theorem Localization.npow_def {M : Type u_4} [CommMonoid M] (S : Submonoid M) :
                                    Localization.npow S = Monoid.npow

                                    Multiplication with a natural in an AddLocalization is defined as n • ⟨a, b⟩ = ⟨n • a, n • b⟩.

                                    This is a separate irreducible def to ensure the elaborator doesn't waste its time trying to unify some huge recursive definition with itself, but unfolded one step less.

                                    Equations
                                    Instances For
                                      theorem AddLocalization.nsmul_def {M : Type u_4} [AddCommMonoid M] (S : AddSubmonoid M) :
                                      AddLocalization.nsmul S = AddMonoid.nsmul

                                      Multiplication with a natural in an AddLocalization is defined as n • ⟨a, b⟩ = ⟨n • a, n • b⟩.

                                      This is a separate irreducible def to ensure the elaborator doesn't waste its time trying to unify some huge recursive definition with itself, but unfolded one step less.

                                      def AddLocalization.mk {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} (x : M) (y : S) :

                                      Given an AddCommMonoid M and submonoid S, mk sends x : M, y ∈ S to the equivalence class of (x, y) in the localization of M at S.

                                      Equations
                                      Instances For
                                        def Localization.mk {M : Type u_1} [CommMonoid M] {S : Submonoid M} (x : M) (y : S) :

                                        Given a CommMonoid M and submonoid S, mk sends x : M, y ∈ S to the equivalence class of (x, y) in the localization of M at S.

                                        Equations
                                        Instances For
                                          theorem AddLocalization.mk_eq_mk_iff {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {a : M} {c : M} {b : S} {d : S} :
                                          theorem Localization.mk_eq_mk_iff {M : Type u_1} [CommMonoid M] {S : Submonoid M} {a : M} {c : M} {b : S} {d : S} :
                                          theorem AddLocalization.rec.proof_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {a : M} {c : M} {b : S} {d : S} (h : (AddLocalization.r S) (a, b) (c, d)) :
                                          theorem AddLocalization.rec.proof_3 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization SSort u_2} (f : (a : M) → (b : S) → p (AddLocalization.mk a b)) (H : ∀ {a c : M} {b d : S} (h : (AddLocalization.r S) (a, b) (c, d)), f a b = f c d) (y : M × S) (z : M × S) (h : Setoid.r y z) :
                                          (fun (y : M × S) => f y.1 y.2) y = (fun (y : M × S) => f y.1 y.2) z
                                          def AddLocalization.rec {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization SSort u} (f : (a : M) → (b : S) → p (AddLocalization.mk a b)) (H : ∀ {a c : M} {b d : S} (h : (AddLocalization.r S) (a, b) (c, d)), f a b = f c d) (x : AddLocalization S) :
                                          p x

                                          Dependent recursion principle for AddLocalizations: given elements f a b : p (mk a b) for all a b, such that r S (a, b) (c, d) implies f a b = f c d (with the correct coercions), then f is defined on the whole AddLocalization S.

                                          Equations
                                          Instances For
                                            def Localization.rec {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization SSort u} (f : (a : M) → (b : S) → p (Localization.mk a b)) (H : ∀ {a c : M} {b d : S} (h : (Localization.r S) (a, b) (c, d)), f a b = f c d) (x : Localization S) :
                                            p x

                                            Dependent recursion principle for Localizations: given elements f a b : p (mk a b) for all a b, such that r S (a, b) (c, d) implies f a b = f c d (with the correct coercions), then f is defined on the whole Localization S.

                                            Equations
                                            Instances For
                                              theorem AddLocalization.recOnSubsingleton₂.proof_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {r : AddLocalization SAddLocalization SSort u_2} [h : ∀ (a c : M) (b d : S), Subsingleton (r (AddLocalization.mk a b) (AddLocalization.mk c d))] (t : M × S) (b : M × S) :
                                              Subsingleton (r t b)
                                              def AddLocalization.recOnSubsingleton₂ {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {r : AddLocalization SAddLocalization SSort u} [h : ∀ (a c : M) (b d : S), Subsingleton (r (AddLocalization.mk a b) (AddLocalization.mk c d))] (x : AddLocalization S) (y : AddLocalization S) (f : (a c : M) → (b d : S) → r (AddLocalization.mk a b) (AddLocalization.mk c d)) :
                                              r x y

                                              Copy of Quotient.recOnSubsingleton₂ for AddLocalization

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                def Localization.recOnSubsingleton₂ {M : Type u_1} [CommMonoid M] {S : Submonoid M} {r : Localization SLocalization SSort u} [h : ∀ (a c : M) (b d : S), Subsingleton (r (Localization.mk a b) (Localization.mk c d))] (x : Localization S) (y : Localization S) (f : (a c : M) → (b d : S) → r (Localization.mk a b) (Localization.mk c d)) :
                                                r x y

                                                Copy of Quotient.recOnSubsingleton₂ for Localization

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  theorem AddLocalization.mk_add {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} (a : M) (c : M) (b : S) (d : S) :
                                                  theorem Localization.mk_mul {M : Type u_1} [CommMonoid M] {S : Submonoid M} (a : M) (c : M) (b : S) (d : S) :
                                                  theorem AddLocalization.mk_nsmul {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} (n : ) (a : M) (b : S) :
                                                  theorem Localization.mk_pow {M : Type u_1} [CommMonoid M] {S : Submonoid M} (n : ) (a : M) (b : S) :
                                                  Localization.mk a b ^ n = Localization.mk (a ^ n) (b ^ n)
                                                  @[simp]
                                                  theorem AddLocalization.ndrec_mk {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization SSort u} (f : (a : M) → (b : S) → p (AddLocalization.mk a b)) (H : ∀ {a c : M} {b d : S} (h : (AddLocalization.r S) (a, b) (c, d)), f a b = f c d) (a : M) (b : S) :
                                                  @[simp]
                                                  theorem Localization.ndrec_mk {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization SSort u} (f : (a : M) → (b : S) → p (Localization.mk a b)) (H : ∀ {a c : M} {b d : S} (h : (Localization.r S) (a, b) (c, d)), f a b = f c d) (a : M) (b : S) :
                                                  def AddLocalization.liftOn {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u} (x : AddLocalization S) (f : MSp) (H : ∀ {a c : M} {b d : S}, (AddLocalization.r S) (a, b) (c, d)f a b = f c d) :
                                                  p

                                                  Non-dependent recursion principle for AddLocalizations: given elements f a b : p for all a b, such that r S (a, b) (c, d) implies f a b = f c d, then f is defined on the whole Localization S.

                                                  Equations
                                                  Instances For
                                                    theorem AddLocalization.liftOn.proof_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u_2} (f : MSp) (H : ∀ {a c : M} {b d : S}, (AddLocalization.r S) (a, b) (c, d)f a b = f c d) :
                                                    ∀ {a c : M} {b d : S} (h : (AddLocalization.r S) (a, b) (c, d)), f a b = f c d
                                                    def Localization.liftOn {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (x : Localization S) (f : MSp) (H : ∀ {a c : M} {b d : S}, (Localization.r S) (a, b) (c, d)f a b = f c d) :
                                                    p

                                                    Non-dependent recursion principle for localizations: given elements f a b : p for all a b, such that r S (a, b) (c, d) implies f a b = f c d, then f is defined on the whole Localization S.

                                                    Equations
                                                    Instances For
                                                      theorem AddLocalization.liftOn_mk {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u} (f : MSp) (H : ∀ {a c : M} {b d : S}, (AddLocalization.r S) (a, b) (c, d)f a b = f c d) (a : M) (b : S) :
                                                      theorem Localization.liftOn_mk {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (f : MSp) (H : ∀ {a c : M} {b d : S}, (Localization.r S) (a, b) (c, d)f a b = f c d) (a : M) (b : S) :
                                                      theorem AddLocalization.ind {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization SProp} (H : ∀ (y : M × S), p (AddLocalization.mk y.1 y.2)) (x : AddLocalization S) :
                                                      p x
                                                      theorem Localization.ind {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization SProp} (H : ∀ (y : M × S), p (Localization.mk y.1 y.2)) (x : Localization S) :
                                                      p x
                                                      theorem AddLocalization.induction_on {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization SProp} (x : AddLocalization S) (H : ∀ (y : M × S), p (AddLocalization.mk y.1 y.2)) :
                                                      p x
                                                      theorem Localization.induction_on {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization SProp} (x : Localization S) (H : ∀ (y : M × S), p (Localization.mk y.1 y.2)) :
                                                      p x
                                                      theorem AddLocalization.liftOn₂.proof_2 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u_2} (y : AddLocalization S) (f : MSMSp) (H : ∀ {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (AddLocalization.r S) (a, b) (a', b')(AddLocalization.r S) (c, d) (c', d')f a b c d = f a' b' c' d') :
                                                      ∀ {a c : M} {b d : S}, (AddLocalization.r S) (a, b) (c, d)(fun (a : M) (b : S) => AddLocalization.liftOn y (f a b) ) a b = (fun (a : M) (b : S) => AddLocalization.liftOn y (f a b) ) c d
                                                      abbrev AddLocalization.liftOn₂.match_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} (motive : M × SProp) :
                                                      ∀ (x : M × S), (∀ (fst : M) (snd : S), motive (fst, snd))motive x
                                                      Equations
                                                      • =
                                                      Instances For
                                                        def AddLocalization.liftOn₂ {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u} (x : AddLocalization S) (y : AddLocalization S) (f : MSMSp) (H : ∀ {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (AddLocalization.r S) (a, b) (a', b')(AddLocalization.r S) (c, d) (c', d')f a b c d = f a' b' c' d') :
                                                        p

                                                        Non-dependent recursion principle for localizations: given elements f x y : p for all x and y, such that r S x x' and r S y y' implies f x y = f x' y', then f is defined on the whole Localization S.

                                                        Equations
                                                        Instances For
                                                          theorem AddLocalization.liftOn₂.proof_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u_2} (f : MSMSp) (H : ∀ {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (AddLocalization.r S) (a, b) (a', b')(AddLocalization.r S) (c, d) (c', d')f a b c d = f a' b' c' d') (a : M) (b : S) :
                                                          ∀ {a_1 c : M} {b_1 d : S}, (AddLocalization.r S) (a_1, b_1) (c, d)f a b a_1 b_1 = f a b c d
                                                          def Localization.liftOn₂ {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (x : Localization S) (y : Localization S) (f : MSMSp) (H : ∀ {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (Localization.r S) (a, b) (a', b')(Localization.r S) (c, d) (c', d')f a b c d = f a' b' c' d') :
                                                          p

                                                          Non-dependent recursion principle for localizations: given elements f x y : p for all x and y, such that r S x x' and r S y y' implies f x y = f x' y', then f is defined on the whole Localization S.

                                                          Equations
                                                          Instances For
                                                            theorem AddLocalization.liftOn₂_mk {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u_4} (f : MSMSp) (H : ∀ {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (AddLocalization.r S) (a, b) (a', b')(AddLocalization.r S) (c, d) (c', d')f a b c d = f a' b' c' d') (a : M) (c : M) (b : S) (d : S) :
                                                            theorem Localization.liftOn₂_mk {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u_4} (f : MSMSp) (H : ∀ {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (Localization.r S) (a, b) (a', b')(Localization.r S) (c, d) (c', d')f a b c d = f a' b' c' d') (a : M) (c : M) (b : S) (d : S) :
                                                            theorem AddLocalization.induction_on₂ {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization SAddLocalization SProp} (x : AddLocalization S) (y : AddLocalization S) (H : ∀ (x y : M × S), p (AddLocalization.mk x.1 x.2) (AddLocalization.mk y.1 y.2)) :
                                                            p x y
                                                            theorem Localization.induction_on₂ {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization SLocalization SProp} (x : Localization S) (y : Localization S) (H : ∀ (x y : M × S), p (Localization.mk x.1 x.2) (Localization.mk y.1 y.2)) :
                                                            p x y
                                                            theorem AddLocalization.induction_on₃ {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization SAddLocalization SAddLocalization SProp} (x : AddLocalization S) (y : AddLocalization S) (z : AddLocalization S) (H : ∀ (x y z : M × S), p (AddLocalization.mk x.1 x.2) (AddLocalization.mk y.1 y.2) (AddLocalization.mk z.1 z.2)) :
                                                            p x y z
                                                            theorem Localization.induction_on₃ {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization SLocalization SLocalization SProp} (x : Localization S) (y : Localization S) (z : Localization S) (H : ∀ (x y z : M × S), p (Localization.mk x.1 x.2) (Localization.mk y.1 y.2) (Localization.mk z.1 z.2)) :
                                                            p x y z
                                                            theorem AddLocalization.zero_rel {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} (y : S) :
                                                            (AddLocalization.r S) 0 (y, y)
                                                            theorem Localization.one_rel {M : Type u_1} [CommMonoid M] {S : Submonoid M} (y : S) :
                                                            (Localization.r S) 1 (y, y)
                                                            theorem AddLocalization.r_of_eq {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {x : M × S} {y : M × S} (h : y.2 + x.1 = x.2 + y.1) :
                                                            theorem Localization.r_of_eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {x : M × S} {y : M × S} (h : y.2 * x.1 = x.2 * y.1) :
                                                            theorem AddLocalization.mk_self {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} (a : S) :
                                                            theorem Localization.mk_self {M : Type u_1} [CommMonoid M] {S : Submonoid M} (a : S) :
                                                            Localization.mk (a) a = 1
                                                            @[irreducible]
                                                            def Localization.smul {M : Type u_7} [CommMonoid M] {S : Submonoid M} {R : Type u_8} [SMul R M] [IsScalarTower R M M] (c : R) (z : Localization S) :

                                                            Scalar multiplication in a monoid localization is defined as c • ⟨a, b⟩ = ⟨c • a, b⟩.

                                                            Equations
                                                            Instances For
                                                              theorem Localization.smul_def {M : Type u_7} [CommMonoid M] {S : Submonoid M} {R : Type u_8} [SMul R M] [IsScalarTower R M M] (c : R) (z : Localization S) :
                                                              Localization.smul c z = Localization.liftOn z (fun (a : M) (b : S) => Localization.mk (c a) b)
                                                              instance Localization.instSMulLocalization {M : Type u_1} [CommMonoid M] {S : Submonoid M} {R : Type u_4} [SMul R M] [IsScalarTower R M M] :
                                                              Equations
                                                              • Localization.instSMulLocalization = { smul := Localization.smul }
                                                              theorem Localization.smul_mk {M : Type u_1} [CommMonoid M] {S : Submonoid M} {R : Type u_4} [SMul R M] [IsScalarTower R M M] (c : R) (a : M) (b : S) :
                                                              instance Localization.instSMulCommClassLocalizationInstSMulLocalizationInstSMulLocalization {M : Type u_1} [CommMonoid M] {S : Submonoid M} {R₁ : Type u_5} {R₂ : Type u_6} [SMul R₁ M] [SMul R₂ M] [IsScalarTower R₁ M M] [IsScalarTower R₂ M M] [SMulCommClass R₁ R₂ M] :
                                                              Equations
                                                              • =
                                                              instance Localization.instIsScalarTowerLocalizationInstSMulLocalizationInstSMulLocalization {M : Type u_1} [CommMonoid M] {S : Submonoid M} {R₁ : Type u_5} {R₂ : Type u_6} [SMul R₁ M] [SMul R₂ M] [IsScalarTower R₁ M M] [IsScalarTower R₂ M M] [SMul R₁ R₂] [IsScalarTower R₁ R₂ M] :
                                                              Equations
                                                              • =
                                                              Equations
                                                              • =
                                                              Equations
                                                              • =
                                                              Equations
                                                              Equations
                                                              def AddMonoidHom.toLocalizationMap {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : M →+ N) (H1 : ∀ (y : S), IsAddUnit (f y)) (H2 : ∀ (z : N), ∃ (x : M × S), z + f x.2 = f x.1) (H3 : ∀ (x y : M), f x = f y∃ (c : S), c + x = c + y) :

                                                              Makes a localization map from an AddCommMonoid hom satisfying the characteristic predicate.

                                                              Equations
                                                              Instances For
                                                                def MonoidHom.toLocalizationMap {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : M →* N) (H1 : ∀ (y : S), IsUnit (f y)) (H2 : ∀ (z : N), ∃ (x : M × S), z * f x.2 = f x.1) (H3 : ∀ (x y : M), f x = f y∃ (c : S), c * x = c * y) :

                                                                Makes a localization map from a CommMonoid hom satisfying the characteristic predicate.

                                                                Equations
                                                                Instances For

                                                                  Short for toAddMonoidHom; used to apply a localization map as a function.

                                                                  Equations
                                                                  Instances For
                                                                    @[inline, reducible]
                                                                    abbrev Submonoid.LocalizationMap.toMap {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) :
                                                                    M →* N

                                                                    Short for toMonoidHom; used to apply a localization map as a function.

                                                                    Equations
                                                                    Instances For
                                                                      theorem AddSubmonoid.LocalizationMap.toMap_injective {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] :
                                                                      Function.Injective AddSubmonoid.LocalizationMap.toMap
                                                                      theorem Submonoid.LocalizationMap.toMap_injective {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] :
                                                                      Function.Injective Submonoid.LocalizationMap.toMap
                                                                      theorem Submonoid.LocalizationMap.surj {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (z : N) :

                                                                      Given a localization map f : M →+ N, and z w : N, there exist z' w' : M and d : S such that f z' - f d = z and f w' - f d = w.

                                                                      abbrev AddSubmonoid.LocalizationMap.surj₂.match_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) (z : N) (motive : (∃ (x : M × S), z + (AddSubmonoid.LocalizationMap.toMap f) x.2 = (AddSubmonoid.LocalizationMap.toMap f) x.1)Prop) :
                                                                      ∀ (x : ∃ (x : M × S), z + (AddSubmonoid.LocalizationMap.toMap f) x.2 = (AddSubmonoid.LocalizationMap.toMap f) x.1), (∀ (a : M × S) (ha : z + (AddSubmonoid.LocalizationMap.toMap f) a.2 = (AddSubmonoid.LocalizationMap.toMap f) a.1), motive )motive x
                                                                      Equations
                                                                      • =
                                                                      Instances For
                                                                        theorem Submonoid.LocalizationMap.surj₂ {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (z : N) (w : N) :

                                                                        Given a localization map f : M →* N, and z w : N, there exist z' w' : M and d : S such that f z' / f d = z and f w' / f d = w.

                                                                        abbrev AddSubmonoid.LocalizationMap.eq_iff_exists.match_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {x : M} {y : M} (motive : (∃ (c : S), c + x = c + y)Prop) :
                                                                        ∀ (x_1 : ∃ (c : S), c + x = c + y), (∀ (c : S) (h : c + x = c + y), motive )motive x_1
                                                                        Equations
                                                                        • =
                                                                        Instances For
                                                                          theorem Submonoid.LocalizationMap.eq_iff_exists {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {x : M} {y : M} :
                                                                          (Submonoid.LocalizationMap.toMap f) x = (Submonoid.LocalizationMap.toMap f) y ∃ (c : S), c * x = c * y
                                                                          noncomputable def AddSubmonoid.LocalizationMap.sec {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) (z : N) :
                                                                          M × S

                                                                          Given a localization map f : M →+ N, a section function sending z : N to some (x, y) : M × S such that f x - f y = z.

                                                                          Equations
                                                                          Instances For
                                                                            noncomputable def Submonoid.LocalizationMap.sec {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (z : N) :
                                                                            M × S

                                                                            Given a localization map f : M →* N, a section function sending z : N to some (x, y) : M × S such that f x * (f y)⁻¹ = z.

                                                                            Equations
                                                                            Instances For
                                                                              theorem AddSubmonoid.LocalizationMap.add_neg_left {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {f : M →+ N} (h : ∀ (y : S), IsAddUnit (f y)) (y : S) (w : N) (z : N) :
                                                                              w + (-(IsAddUnit.liftRight (AddMonoidHom.restrict f S) h) y) = z w = f y + z

                                                                              Given an AddMonoidHom f : M →+ N and Submonoid S ⊆ M such that f(S) ⊆ AddUnits N, for all w, z : N and y ∈ S, we have w - f y = z ↔ w = f y + z.

                                                                              theorem Submonoid.LocalizationMap.mul_inv_left {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : M →* N} (h : ∀ (y : S), IsUnit (f y)) (y : S) (w : N) (z : N) :
                                                                              w * ((IsUnit.liftRight (MonoidHom.restrict f S) h) y)⁻¹ = z w = f y * z

                                                                              Given a MonoidHom f : M →* N and Submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all w, z : N and y ∈ S, we have w * (f y)⁻¹ = z ↔ w = f y * z.

                                                                              theorem AddSubmonoid.LocalizationMap.add_neg_right {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {f : M →+ N} (h : ∀ (y : S), IsAddUnit (f y)) (y : S) (w : N) (z : N) :
                                                                              z = w + (-(IsAddUnit.liftRight (AddMonoidHom.restrict f S) h) y) z + f y = w

                                                                              Given an AddMonoidHom f : M →+ N and Submonoid S ⊆ M such that f(S) ⊆ AddUnits N, for all w, z : N and y ∈ S, we have z = w - f y ↔ z + f y = w.

                                                                              theorem Submonoid.LocalizationMap.mul_inv_right {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : M →* N} (h : ∀ (y : S), IsUnit (f y)) (y : S) (w : N) (z : N) :
                                                                              z = w * ((IsUnit.liftRight (MonoidHom.restrict f S) h) y)⁻¹ z * f y = w

                                                                              Given a MonoidHom f : M →* N and Submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all w, z : N and y ∈ S, we have z = w * (f y)⁻¹ ↔ z * f y = w.

                                                                              @[simp]
                                                                              theorem AddSubmonoid.LocalizationMap.add_neg {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {f : M →+ N} (h : ∀ (y : S), IsAddUnit (f y)) {x₁ : M} {x₂ : M} {y₁ : S} {y₂ : S} :
                                                                              f x₁ + (-(IsAddUnit.liftRight (AddMonoidHom.restrict f S) h) y₁) = f x₂ + (-(IsAddUnit.liftRight (AddMonoidHom.restrict f S) h) y₂) f (x₁ + y₂) = f (x₂ + y₁)

                                                                              Given an AddMonoidHom f : M →+ N and Submonoid S ⊆ M such that f(S) ⊆ AddUnits N, for all x₁ x₂ : M and y₁, y₂ ∈ S, we have f x₁ - f y₁ = f x₂ - f y₂ ↔ f (x₁ + y₂) = f (x₂ + y₁).

                                                                              @[simp]
                                                                              theorem Submonoid.LocalizationMap.mul_inv {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : M →* N} (h : ∀ (y : S), IsUnit (f y)) {x₁ : M} {x₂ : M} {y₁ : S} {y₂ : S} :
                                                                              f x₁ * ((IsUnit.liftRight (MonoidHom.restrict f S) h) y₁)⁻¹ = f x₂ * ((IsUnit.liftRight (MonoidHom.restrict f S) h) y₂)⁻¹ f (x₁ * y₂) = f (x₂ * y₁)

                                                                              Given a MonoidHom f : M →* N and Submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all x₁ x₂ : M and y₁, y₂ ∈ S, we have f x₁ * (f y₁)⁻¹ = f x₂ * (f y₂)⁻¹ ↔ f (x₁ * y₂) = f (x₂ * y₁).

                                                                              theorem AddSubmonoid.LocalizationMap.neg_inj {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {f : M →+ N} (hf : ∀ (y : S), IsAddUnit (f y)) {y : S} {z : S} (h : -(IsAddUnit.liftRight (AddMonoidHom.restrict f S) hf) y = -(IsAddUnit.liftRight (AddMonoidHom.restrict f S) hf) z) :
                                                                              f y = f z

                                                                              Given an AddMonoidHom f : M →+ N and Submonoid S ⊆ M such that f(S) ⊆ AddUnits N, for all y, z ∈ S, we have - (f y) = - (f z) → f y = f z.

                                                                              theorem Submonoid.LocalizationMap.inv_inj {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : M →* N} (hf : ∀ (y : S), IsUnit (f y)) {y : S} {z : S} (h : ((IsUnit.liftRight (MonoidHom.restrict f S) hf) y)⁻¹ = ((IsUnit.liftRight (MonoidHom.restrict f S) hf) z)⁻¹) :
                                                                              f y = f z

                                                                              Given a MonoidHom f : M →* N and Submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all y, z ∈ S, we have (f y)⁻¹ = (f z)⁻¹ → f y = f z.

                                                                              theorem AddSubmonoid.LocalizationMap.neg_unique {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {f : M →+ N} (h : ∀ (y : S), IsAddUnit (f y)) {y : S} {z : N} (H : f y + z = 0) :

                                                                              Given an AddMonoidHom f : M →+ N and Submonoid S ⊆ M such that f(S) ⊆ AddUnits N, for all y ∈ S, - (f y) is unique.

                                                                              theorem Submonoid.LocalizationMap.inv_unique {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : M →* N} (h : ∀ (y : S), IsUnit (f y)) {y : S} {z : N} (H : f y * z = 1) :

                                                                              Given a MonoidHom f : M →* N and Submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all y ∈ S, (f y)⁻¹ is unique.

                                                                              abbrev AddSubmonoid.LocalizationMap.map_right_cancel.match_1 {M : Type u_2} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_1} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) {c : S} (motive : IsAddUnit ((AddSubmonoid.LocalizationMap.toMap f) c)Prop) :
                                                                              ∀ (x : IsAddUnit ((AddSubmonoid.LocalizationMap.toMap f) c)), (∀ (u : AddUnits N) (hu : u = (AddSubmonoid.LocalizationMap.toMap f) c), motive )motive x
                                                                              Equations
                                                                              • =
                                                                              Instances For
                                                                                noncomputable def AddSubmonoid.LocalizationMap.mk' {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) (x : M) (y : S) :
                                                                                N

                                                                                Given a localization map f : M →+ N, the surjection sending (x, y) : M × S to f x - f y.

                                                                                Equations
                                                                                Instances For
                                                                                  noncomputable def Submonoid.LocalizationMap.mk' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (x : M) (y : S) :
                                                                                  N

                                                                                  Given a localization map f : M →* N, the surjection sending (x, y) : M × S to f x * (f y)⁻¹.

                                                                                  Equations
                                                                                  Instances For
                                                                                    theorem AddSubmonoid.LocalizationMap.mk'_add {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) (x₁ : M) (x₂ : M) (y₁ : S) (y₂ : S) :
                                                                                    theorem Submonoid.LocalizationMap.mk'_mul {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (x₁ : M) (x₂ : M) (y₁ : S) (y₂ : S) :
                                                                                    @[simp]

                                                                                    Given a localization map f : M →+ N for a Submonoid S ⊆ M, for all z : N we have that if x : M, y ∈ S are such that z + f y = f x, then f x - f y = z.

                                                                                    @[simp]

                                                                                    Given a localization map f : M →* N for a submonoid S ⊆ M, for all z : N we have that if x : M, y ∈ S are such that z * f y = f x, then f x * (f y)⁻¹ = z.

                                                                                    theorem Submonoid.LocalizationMap.mk'_surjective {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (z : N) :
                                                                                    ∃ (x : M) (y : S), Submonoid.LocalizationMap.mk' f x y = z
                                                                                    theorem AddSubmonoid.LocalizationMap.mk'_eq_iff_eq {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) {x₁ : M} {x₂ : M} {y₁ : S} {y₂ : S} :
                                                                                    theorem Submonoid.LocalizationMap.mk'_eq_iff_eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {x₁ : M} {x₂ : M} {y₁ : S} {y₂ : S} :
                                                                                    theorem AddSubmonoid.LocalizationMap.mk'_eq_iff_eq' {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) {x₁ : M} {x₂ : M} {y₁ : S} {y₂ : S} :
                                                                                    theorem Submonoid.LocalizationMap.mk'_eq_iff_eq' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {x₁ : M} {x₂ : M} {y₁ : S} {y₂ : S} :
                                                                                    theorem AddSubmonoid.LocalizationMap.eq {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) {a₁ : M} {b₁ : M} {a₂ : S} {b₂ : S} :
                                                                                    AddSubmonoid.LocalizationMap.mk' f a₁ a₂ = AddSubmonoid.LocalizationMap.mk' f b₁ b₂ ∃ (c : S), c + (b₂ + a₁) = c + (a₂ + b₁)
                                                                                    theorem Submonoid.LocalizationMap.eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {a₁ : M} {b₁ : M} {a₂ : S} {b₂ : S} :
                                                                                    Submonoid.LocalizationMap.mk' f a₁ a₂ = Submonoid.LocalizationMap.mk' f b₁ b₂ ∃ (c : S), c * (b₂ * a₁) = c * (a₂ * b₁)
                                                                                    theorem AddSubmonoid.LocalizationMap.eq' {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) {a₁ : M} {b₁ : M} {a₂ : S} {b₂ : S} :
                                                                                    AddSubmonoid.LocalizationMap.mk' f a₁ a₂ = AddSubmonoid.LocalizationMap.mk' f b₁ b₂ (AddLocalization.r S) (a₁, a₂) (b₁, b₂)
                                                                                    theorem Submonoid.LocalizationMap.eq' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {a₁ : M} {b₁ : M} {a₂ : S} {b₂ : S} :
                                                                                    Submonoid.LocalizationMap.mk' f a₁ a₂ = Submonoid.LocalizationMap.mk' f b₁ b₂ (Localization.r S) (a₁, a₂) (b₁, b₂)
                                                                                    theorem Submonoid.LocalizationMap.mk'_eq_iff_mk'_eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) (g : Submonoid.LocalizationMap S P) {x₁ : M} {x₂ : M} {y₁ : S} {y₂ : S} :

                                                                                    Given a Localization map f : M →+ N for a Submonoid S ⊆ M, for all x₁ : M and y₁ ∈ S, if x₂ : M, y₂ ∈ S are such that (f x₁ - f y₁) + f y₂ = f x₂, then there exists c ∈ S such that x₁ + y₂ + c = x₂ + y₁ + c.

                                                                                    theorem Submonoid.LocalizationMap.exists_of_sec_mk' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (x : M) (y : S) :

                                                                                    Given a Localization map f : M →* N for a Submonoid S ⊆ M, for all x₁ : M and y₁ ∈ S, if x₂ : M, y₂ ∈ S are such that f x₁ * (f y₁)⁻¹ * f y₂ = f x₂, then there exists c ∈ S such that x₁ * y₂ * c = x₂ * y₁ * c.

                                                                                    theorem AddSubmonoid.LocalizationMap.mk'_eq_of_eq {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) {a₁ : M} {b₁ : M} {a₂ : S} {b₂ : S} (H : a₂ + b₁ = b₂ + a₁) :
                                                                                    theorem Submonoid.LocalizationMap.mk'_eq_of_eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {a₁ : M} {b₁ : M} {a₂ : S} {b₂ : S} (H : a₂ * b₁ = b₂ * a₁) :
                                                                                    theorem AddSubmonoid.LocalizationMap.mk'_eq_of_eq' {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) {a₁ : M} {b₁ : M} {a₂ : S} {b₂ : S} (H : b₁ + a₂ = a₁ + b₂) :
                                                                                    theorem Submonoid.LocalizationMap.mk'_eq_of_eq' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {a₁ : M} {b₁ : M} {a₂ : S} {b₂ : S} (H : b₁ * a₂ = a₁ * b₂) :
                                                                                    theorem Submonoid.LocalizationMap.mk'_cancel {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (a : M) (b : S) (c : S) :
                                                                                    theorem AddSubmonoid.LocalizationMap.mk'_eq_of_same {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) {a : M} {b : M} {d : S} :
                                                                                    AddSubmonoid.LocalizationMap.mk' f a d = AddSubmonoid.LocalizationMap.mk' f b d ∃ (c : S), c + a = c + b
                                                                                    theorem Submonoid.LocalizationMap.mk'_eq_of_same {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {a : M} {b : M} {d : S} :
                                                                                    Submonoid.LocalizationMap.mk' f a d = Submonoid.LocalizationMap.mk' f b d ∃ (c : S), c * a = c * b
                                                                                    @[simp]
                                                                                    theorem Submonoid.LocalizationMap.mk'_self' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (y : S) :
                                                                                    @[simp]
                                                                                    theorem AddSubmonoid.LocalizationMap.mk'_self {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : AddSubmonoid.LocalizationMap S N) (x : M) (H : x S) :
                                                                                    AddSubmonoid.LocalizationMap.mk' f x { val := x, property := H } = 0
                                                                                    @[simp]
                                                                                    theorem Submonoid.LocalizationMap.mk'_self {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (x : M) (H : x S) :
                                                                                    Submonoid.LocalizationMap.mk' f x { val := x, property := H } = 1
                                                                                    theorem Submonoid.LocalizationMap.isUnit_comp {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) (j : N →* P) (y : S) :
                                                                                    theorem AddSubmonoid.LocalizationMap.eq_of_eq {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) {x : M} {y : M} (h : (AddSubmonoid.LocalizationMap.toMap f) x = (AddSubmonoid.LocalizationMap.toMap f) y) :
                                                                                    g x = g y

                                                                                    Given a Localization map f : M →+ N for a Submonoid S ⊆ M and a map of AddCommMonoids g : M →+ P such that g(S) ⊆ AddUnits P, f x = f y → g x = g y for all x y : M.

                                                                                    theorem Submonoid.LocalizationMap.eq_of_eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) {x : M} {y : M} (h : (Submonoid.LocalizationMap.toMap f) x = (Submonoid.LocalizationMap.toMap f) y) :
                                                                                    g x = g y

                                                                                    Given a Localization map f : M →* N for a Submonoid S ⊆ M and a map of CommMonoids g : M →* P such that g(S) ⊆ Units P, f x = f y → g x = g y for all x y : M.

                                                                                    Given AddCommMonoids M, P, Localization maps f : M →+ N, k : P →+ Q for Submonoids S, T respectively, and g : M →+ P such that g(S) ⊆ T, f x = f y implies k (g x) = k (g y).

                                                                                    theorem Submonoid.LocalizationMap.comp_eq_of_eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] (hg : ∀ (y : S), g y T) (k : Submonoid.LocalizationMap T Q) {x : M} {y : M} (h : (Submonoid.LocalizationMap.toMap f) x = (Submonoid.LocalizationMap.toMap f) y) :

                                                                                    Given CommMonoids M, P, Localization maps f : M →* N, k : P →* Q for Submonoids S, T respectively, and g : M →* P such that g(S) ⊆ T, f x = f y implies k (g x) = k (g y).

                                                                                    theorem AddSubmonoid.LocalizationMap.lift.proof_3 {M : Type u_3} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_1} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) (x : N) (y : N) :
                                                                                    { toFun := fun (z : N) => g (AddSubmonoid.LocalizationMap.sec f z).1 + (-(IsAddUnit.liftRight (AddMonoidHom.restrict g S) hg) (AddSubmonoid.LocalizationMap.sec f z).2), map_zero' := }.toFun (x + y) = { toFun := fun (z : N) => g (AddSubmonoid.LocalizationMap.sec f z).1 + (-(IsAddUnit.liftRight (AddMonoidHom.restrict g S) hg) (AddSubmonoid.LocalizationMap.sec f z).2), map_zero' := }.toFun x + { toFun := fun (z : N) => g (AddSubmonoid.LocalizationMap.sec f z).1 + (-(IsAddUnit.liftRight (AddMonoidHom.restrict g S) hg) (AddSubmonoid.LocalizationMap.sec f z).2), map_zero' := }.toFun y
                                                                                    noncomputable def AddSubmonoid.LocalizationMap.lift {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) :
                                                                                    N →+ P

                                                                                    Given a localization map f : M →+ N for a submonoid S ⊆ M and a map of AddCommMonoids g : M →+ P such that g y is invertible for all y : S, the homomorphism induced from N to P sending z : N to g x - g y, where (x, y) : M × S are such that z = f x - f y.

                                                                                    Equations
                                                                                    • One or more equations did not get rendered due to their size.
                                                                                    Instances For
                                                                                      theorem AddSubmonoid.LocalizationMap.lift.proof_2 {M : Type u_2} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_3} [AddCommMonoid N] {P : Type u_1} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) :
                                                                                      noncomputable def Submonoid.LocalizationMap.lift {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) :
                                                                                      N →* P

                                                                                      Given a Localization map f : M →* N for a Submonoid S ⊆ M and a map of CommMonoids g : M →* P such that g y is invertible for all y : S, the homomorphism induced from N to P sending z : N to g x * (g y)⁻¹, where (x, y) : M × S are such that z = f x * (f y)⁻¹.

                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      Instances For
                                                                                        theorem AddSubmonoid.LocalizationMap.lift_mk' {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) (x : M) (y : S) :

                                                                                        Given a Localization map f : M →+ N for a Submonoid S ⊆ M and a map of AddCommMonoids g : M →+ P such that g y is invertible for all y : S, the homomorphism induced from N to P maps f x - f y to g x - g y for all x : M, y ∈ S.

                                                                                        theorem Submonoid.LocalizationMap.lift_mk' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) (x : M) (y : S) :

                                                                                        Given a Localization map f : M →* N for a Submonoid S ⊆ M and a map of CommMonoids g : M →* P such that g y is invertible for all y : S, the homomorphism induced from N to P maps f x * (f y)⁻¹ to g x * (g y)⁻¹ for all x : M, y ∈ S.

                                                                                        theorem AddSubmonoid.LocalizationMap.lift_spec {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) (z : N) (v : P) :

                                                                                        Given a Localization map f : M →+ N for a Submonoid S ⊆ M, if an AddCommMonoid map g : M →+ P induces a map f.lift hg : N →+ P then for all z : N, v : P, we have f.lift hg z = v ↔ g x = g y + v, where x : M, y ∈ S are such that z + f y = f x.

                                                                                        theorem Submonoid.LocalizationMap.lift_spec {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) (z : N) (v : P) :

                                                                                        Given a Localization map f : M →* N for a Submonoid S ⊆ M, if a CommMonoid map g : M →* P induces a map f.lift hg : N →* P then for all z : N, v : P, we have f.lift hg z = v ↔ g x = g y * v, where x : M, y ∈ S are such that z * f y = f x.

                                                                                        theorem AddSubmonoid.LocalizationMap.lift_spec_add {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) (z : N) (w : P) (v : P) :

                                                                                        Given a Localization map f : M →+ N for a Submonoid S ⊆ M, if an AddCommMonoid map g : M →+ P induces a map f.lift hg : N →+ P then for all z : N, v w : P, we have f.lift hg z + w = v ↔ g x + w = g y + v, where x : M, y ∈ S are such that z + f y = f x.

                                                                                        theorem Submonoid.LocalizationMap.lift_spec_mul {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) (z : N) (w : P) (v : P) :

                                                                                        Given a Localization map f : M →* N for a Submonoid S ⊆ M, if a CommMonoid map g : M →* P induces a map f.lift hg : N →* P then for all z : N, v w : P, we have f.lift hg z * w = v ↔ g x * w = g y * v, where x : M, y ∈ S are such that z * f y = f x.

                                                                                        theorem AddSubmonoid.LocalizationMap.lift_mk'_spec {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) (x : M) (v : P) (y : S) :
                                                                                        theorem Submonoid.LocalizationMap.lift_mk'_spec {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) (x : M) (v : P) (y : S) :
                                                                                        theorem AddSubmonoid.LocalizationMap.lift_add_right {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) (z : N) :

                                                                                        Given a Localization map f : M →+ N for a Submonoid S ⊆ M, if an AddCommMonoid map g : M →+ P induces a map f.lift hg : N →+ P then for all z : N, we have f.lift hg z + g y = g x, where x : M, y ∈ S are such that z + f y = f x.

                                                                                        theorem Submonoid.LocalizationMap.lift_mul_right {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) (z : N) :

                                                                                        Given a Localization map f : M →* N for a Submonoid S ⊆ M, if a CommMonoid map g : M →* P induces a map f.lift hg : N →* P then for all z : N, we have f.lift hg z * g y = g x, where x : M, y ∈ S are such that z * f y = f x.

                                                                                        theorem AddSubmonoid.LocalizationMap.lift_add_left {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) (z : N) :

                                                                                        Given a Localization map f : M →+ N for a Submonoid S ⊆ M, if an AddCommMonoid map g : M →+ P induces a map f.lift hg : N →+ P then for all z : N, we have g y + f.lift hg z = g x, where x : M, y ∈ S are such that z + f y = f x.

                                                                                        theorem Submonoid.LocalizationMap.lift_mul_left {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) (z : N) :

                                                                                        Given a Localization map f : M →* N for a Submonoid S ⊆ M, if a CommMonoid map g : M →* P induces a map f.lift hg : N →* P then for all z : N, we have g y * f.lift hg z = g x, where x : M, y ∈ S are such that z * f y = f x.

                                                                                        @[simp]
                                                                                        theorem AddSubmonoid.LocalizationMap.lift_eq {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) (x : M) :
                                                                                        @[simp]
                                                                                        theorem Submonoid.LocalizationMap.lift_eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) (x : M) :
                                                                                        theorem AddSubmonoid.LocalizationMap.lift_eq_iff {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) {x : M × S} {y : M × S} :
                                                                                        theorem Submonoid.LocalizationMap.lift_eq_iff {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) {x : M × S} {y : M × S} :
                                                                                        @[simp]
                                                                                        theorem Submonoid.LocalizationMap.lift_comp {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) :
                                                                                        @[simp]
                                                                                        theorem AddSubmonoid.LocalizationMap.lift_unique {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) {j : N →+ P} (hj : ∀ (x : M), j ((AddSubmonoid.LocalizationMap.toMap f) x) = g x) :
                                                                                        theorem Submonoid.LocalizationMap.lift_unique {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) {j : N →* P} (hj : ∀ (x : M), j ((Submonoid.LocalizationMap.toMap f) x) = g x) :
                                                                                        @[simp]

                                                                                        Given Localization maps f : M →+ N for a Submonoid S ⊆ M and k : M →+ Q for a Submonoid T ⊆ M, such that S ≤ T, and we have l : M →+ A, the composition of the induced map f.lift for k with the induced map k.lift for l is equal to the induced map f.lift for l

                                                                                        theorem Submonoid.LocalizationMap.lift_comp_lift {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) {T : Submonoid M} (hST : S T) {Q : Type u_4} [CommMonoid Q] (k : Submonoid.LocalizationMap T Q) {A : Type u_5} [CommMonoid A] {l : M →* A} (hl : ∀ (w : T), IsUnit (l w)) :

                                                                                        Given Localization maps f : M →* N for a Submonoid S ⊆ M and k : M →* Q for a Submonoid T ⊆ M, such that S ≤ T, and we have l : M →* A, the composition of the induced map f.lift for k with the induced map k.lift for l is equal to the induced map f.lift for l.

                                                                                        @[simp]

                                                                                        Given two Localization maps f : M →+ N, k : M →+ P for a Submonoid S ⊆ M, the hom from P to N induced by f is left inverse to the hom from N to P induced by k.

                                                                                        @[simp]

                                                                                        Given two Localization maps f : M →* N, k : M →* P for a Submonoid S ⊆ M, the hom from P to N induced by f is left inverse to the hom from N to P induced by k.

                                                                                        theorem AddSubmonoid.LocalizationMap.lift_surjective_iff {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} (hg : ∀ (y : S), IsAddUnit (g y)) :
                                                                                        Function.Surjective (AddSubmonoid.LocalizationMap.lift f hg) ∀ (v : P), ∃ (x : M × S), v + g x.2 = g x.1
                                                                                        theorem Submonoid.LocalizationMap.lift_surjective_iff {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) :
                                                                                        Function.Surjective (Submonoid.LocalizationMap.lift f hg) ∀ (v : P), ∃ (x : M × S), v * g x.2 = g x.1
                                                                                        theorem Submonoid.LocalizationMap.lift_injective_iff {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} (hg : ∀ (y : S), IsUnit (g y)) :
                                                                                        noncomputable def AddSubmonoid.LocalizationMap.map {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} {T : AddSubmonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [AddCommMonoid Q] (k : AddSubmonoid.LocalizationMap T Q) :
                                                                                        N →+ Q

                                                                                        Given an AddCommMonoid homomorphism g : M →+ P where for Submonoids S ⊆ M, T ⊆ P we have g(S) ⊆ T, the induced AddMonoid homomorphism from the Localization of M at S to the Localization of P at T: if f : M →+ N and k : P →+ Q are Localization maps for S and T respectively, we send z : N to k (g x) - k (g y), where (x, y) : M × S are such that z = f x - f y.

                                                                                        Equations
                                                                                        Instances For
                                                                                          theorem AddSubmonoid.LocalizationMap.map.proof_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {P : Type u_3} [AddCommMonoid P] {g : M →+ P} {T : AddSubmonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_2} [AddCommMonoid Q] (k : AddSubmonoid.LocalizationMap T Q) (y : S) :
                                                                                          IsAddUnit ((AddSubmonoid.LocalizationMap.toMap k) { val := g y, property := })
                                                                                          noncomputable def Submonoid.LocalizationMap.map {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [CommMonoid Q] (k : Submonoid.LocalizationMap T Q) :
                                                                                          N →* Q

                                                                                          Given a CommMonoid homomorphism g : M →* P where for Submonoids S ⊆ M, T ⊆ P we have g(S) ⊆ T, the induced Monoid homomorphism from the Localization of M at S to the Localization of P at T: if f : M →* N and k : P →* Q are Localization maps for S and T respectively, we send z : N to k (g x) * (k (g y))⁻¹, where (x, y) : M × S are such that z = f x * (f y)⁻¹.

                                                                                          Equations
                                                                                          Instances For
                                                                                            theorem Submonoid.LocalizationMap.map_eq {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [CommMonoid Q] {k : Submonoid.LocalizationMap T Q} (x : M) :
                                                                                            theorem AddSubmonoid.LocalizationMap.map_mk' {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} {T : AddSubmonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [AddCommMonoid Q] {k : AddSubmonoid.LocalizationMap T Q} (x : M) (y : S) :
                                                                                            theorem Submonoid.LocalizationMap.map_mk' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [CommMonoid Q] {k : Submonoid.LocalizationMap T Q} (x : M) (y : S) :
                                                                                            (Submonoid.LocalizationMap.map f hy k) (Submonoid.LocalizationMap.mk' f x y) = Submonoid.LocalizationMap.mk' k (g x) { val := g y, property := }

                                                                                            Given Localization maps f : M →+ N, k : P →+ Q for Submonoids S, T respectively, if an AddCommMonoid homomorphism g : M →+ P induces a f.map hy k : N →+ Q, then for all z : N, u : Q, we have f.map hy k z = u ↔ k (g x) = k (g y) + u where x : M, y ∈ S are such that z + f y = f x.

                                                                                            theorem Submonoid.LocalizationMap.map_spec {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [CommMonoid Q] {k : Submonoid.LocalizationMap T Q} (z : N) (u : Q) :

                                                                                            Given Localization maps f : M →* N, k : P →* Q for Submonoids S, T respectively, if a CommMonoid homomorphism g : M →* P induces a f.map hy k : N →* Q, then for all z : N, u : Q, we have f.map hy k z = u ↔ k (g x) = k (g y) * u where x : M, y ∈ S are such that z * f y = f x.

                                                                                            Given Localization maps f : M →+ N, k : P →+ Q for Submonoids S, T respectively, if an AddCommMonoid homomorphism g : M →+ P induces a f.map hy k : N →+ Q, then for all z : N, we have f.map hy k z + k (g y) = k (g x) where x : M, y ∈ S are such that z + f y = f x.

                                                                                            theorem Submonoid.LocalizationMap.map_mul_right {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [CommMonoid Q] {k : Submonoid.LocalizationMap T Q} (z : N) :

                                                                                            Given Localization maps f : M →* N, k : P →* Q for Submonoids S, T respectively, if a CommMonoid homomorphism g : M →* P induces a f.map hy k : N →* Q, then for all z : N, we have f.map hy k z * k (g y) = k (g x) where x : M, y ∈ S are such that z * f y = f x.

                                                                                            Given Localization maps f : M →+ N, k : P →+ Q for Submonoids S, T respectively if an AddCommMonoid homomorphism g : M →+ P induces a f.map hy k : N →+ Q, then for all z : N, we have k (g y) + f.map hy k z = k (g x) where x : M, y ∈ S are such that z + f y = f x.

                                                                                            theorem Submonoid.LocalizationMap.map_mul_left {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [CommMonoid Q] {k : Submonoid.LocalizationMap T Q} (z : N) :

                                                                                            Given Localization maps f : M →* N, k : P →* Q for Submonoids S, T respectively, if a CommMonoid homomorphism g : M →* P induces a f.map hy k : N →* Q, then for all z : N, we have k (g y) * f.map hy k z = k (g x) where x : M, y ∈ S are such that z * f y = f x.

                                                                                            @[simp]
                                                                                            theorem Submonoid.LocalizationMap.map_id {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) (z : N) :
                                                                                            theorem AddSubmonoid.LocalizationMap.map_comp_map {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} {T : AddSubmonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [AddCommMonoid Q] {k : AddSubmonoid.LocalizationMap T Q} {A : Type u_5} [AddCommMonoid A] {U : AddSubmonoid A} {R : Type u_6} [AddCommMonoid R] (j : AddSubmonoid.LocalizationMap U R) {l : P →+ A} (hl : ∀ (w : T), l w U) :

                                                                                            If AddCommMonoid homs g : M →+ P, l : P →+ A induce maps of localizations, the composition of the induced maps equals the map of localizations induced by l ∘ g.

                                                                                            theorem Submonoid.LocalizationMap.map_comp_map {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [CommMonoid Q] {k : Submonoid.LocalizationMap T Q} {A : Type u_5} [CommMonoid A] {U : Submonoid A} {R : Type u_6} [CommMonoid R] (j : Submonoid.LocalizationMap U R) {l : P →* A} (hl : ∀ (w : T), l w U) :

                                                                                            If CommMonoid homs g : M →* P, l : P →* A induce maps of localizations, the composition of the induced maps equals the map of localizations induced by l ∘ g.

                                                                                            theorem AddSubmonoid.LocalizationMap.map_map {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {g : M →+ P} {T : AddSubmonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [AddCommMonoid Q] {k : AddSubmonoid.LocalizationMap T Q} {A : Type u_5} [AddCommMonoid A] {U : AddSubmonoid A} {R : Type u_6} [AddCommMonoid R] (j : AddSubmonoid.LocalizationMap U R) {l : P →+ A} (hl : ∀ (w : T), l w U) (x : N) :

                                                                                            If AddCommMonoid homs g : M →+ P, l : P →+ A induce maps of localizations, the composition of the induced maps equals the map of localizations induced by l ∘ g.

                                                                                            theorem Submonoid.LocalizationMap.map_map {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {g : M →* P} {T : Submonoid P} (hy : ∀ (y : S), g y T) {Q : Type u_4} [CommMonoid Q] {k : Submonoid.LocalizationMap T Q} {A : Type u_5} [CommMonoid A] {U : Submonoid A} {R : Type u_6} [CommMonoid R] (j : Submonoid.LocalizationMap U R) {l : P →* A} (hl : ∀ (w : T), l w U) (x : N) :

                                                                                            If CommMonoid homs g : M →* P, l : P →* A induce maps of localizations, the composition of the induced maps equals the map of localizations induced by l ∘ g.

                                                                                            Equations
                                                                                            • =
                                                                                            Instances For

                                                                                              Given an injective AddCommMonoid homomorphism g : M →+ P, and a submonoid S ⊆ M, the induced monoid homomorphism from the localization of M at S to the localization of P at g S, is injective.

                                                                                              Given an injective CommMonoid homomorphism g : M →* P, and a submonoid S ⊆ M, the induced monoid homomorphism from the localization of M at S to the localization of P at g S, is injective.

                                                                                              @[reducible]
                                                                                              def AddSubmonoid.LocalizationMap.AwayMap {M : Type u_1} [AddCommMonoid M] (x : M) (N' : Type u_5) [AddCommMonoid N'] :
                                                                                              Type (max u_1 u_5)

                                                                                              Given x : M, the type of AddCommMonoid homomorphisms f : M →+ N such that N is isomorphic to the localization of M at the AddSubmonoid generated by x.

                                                                                              Equations
                                                                                              Instances For
                                                                                                @[reducible]
                                                                                                def Submonoid.LocalizationMap.AwayMap {M : Type u_1} [CommMonoid M] (x : M) (N' : Type u_5) [CommMonoid N'] :
                                                                                                Type (max u_1 u_5)

                                                                                                Given x : M, the type of CommMonoid homomorphisms f : M →* N such that N is isomorphic to the Localization of M at the Submonoid generated by x.

                                                                                                Equations
                                                                                                Instances For
                                                                                                  noncomputable def Submonoid.LocalizationMap.AwayMap.invSelf {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] (x : M) (F : Submonoid.LocalizationMap.AwayMap x N) :
                                                                                                  N

                                                                                                  Given x : M and a Localization map F : M →* N away from x, invSelf is (F x)⁻¹.

                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    noncomputable def Submonoid.LocalizationMap.AwayMap.lift {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] {g : M →* P} (x : M) (F : Submonoid.LocalizationMap.AwayMap x N) (hg : IsUnit (g x)) :
                                                                                                    N →* P

                                                                                                    Given x : M, a Localization map F : M →* N away from x, and a map of CommMonoids g : M →* P such that g x is invertible, the homomorphism induced from N to P sending z : N to g y * (g x)⁻ⁿ, where y : M, n : ℕ are such that z = F y * (F x)⁻ⁿ.

                                                                                                    Equations
                                                                                                    Instances For
                                                                                                      @[simp]
                                                                                                      theorem Submonoid.LocalizationMap.AwayMap.lift_eq {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] {g : M →* P} (x : M) (F : Submonoid.LocalizationMap.AwayMap x N) (hg : IsUnit (g x)) (a : M) :
                                                                                                      noncomputable def Submonoid.LocalizationMap.awayToAwayRight {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (x : M) (F : Submonoid.LocalizationMap.AwayMap x N) (y : M) (G : Submonoid.LocalizationMap.AwayMap (x * y) P) :
                                                                                                      N →* P

                                                                                                      Given x y : M and Localization maps F : M →* N, G : M →* P away from x and x * y respectively, the homomorphism induced from N to P.

                                                                                                      Equations
                                                                                                      Instances For

                                                                                                        Given x : A and a Localization map F : A →+ B away from x, neg_self is - (F x).

                                                                                                        Equations
                                                                                                        Instances For
                                                                                                          noncomputable def AddSubmonoid.LocalizationMap.AwayMap.lift {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AddSubmonoid.LocalizationMap.AwayMap x B) {C : Type u_6} [AddCommMonoid C] {g : A →+ C} (hg : IsAddUnit (g x)) :
                                                                                                          B →+ C

                                                                                                          Given x : A, a localization map F : A →+ B away from x, and a map of AddCommMonoids g : A →+ C such that g x is invertible, the homomorphism induced from B to C sending z : B to g y - n • g x, where y : A, n : ℕ are such that z = F y - n • F x.

                                                                                                          Equations
                                                                                                          Instances For
                                                                                                            noncomputable def AddSubmonoid.LocalizationMap.awayToAwayRight {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AddSubmonoid.LocalizationMap.AwayMap x B) {C : Type u_6} [AddCommMonoid C] (y : A) (G : AddSubmonoid.LocalizationMap.AwayMap (x + y) C) :
                                                                                                            B →+ C

                                                                                                            Given x y : A and Localization maps F : A →+ B, G : A →+ C away from x and x + y respectively, the homomorphism induced from B to C.

                                                                                                            Equations
                                                                                                            Instances For

                                                                                                              If f : M →+ N and k : M →+ R are Localization maps for an AddSubmonoid S, we get an isomorphism of N and R.

                                                                                                              Equations
                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                              Instances For
                                                                                                                noncomputable def Submonoid.LocalizationMap.mulEquivOfLocalizations {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) (k : Submonoid.LocalizationMap S P) :
                                                                                                                N ≃* P

                                                                                                                If f : M →* N and k : M →* P are Localization maps for a Submonoid S, we get an isomorphism of N and P.

                                                                                                                Equations
                                                                                                                • One or more equations did not get rendered due to their size.
                                                                                                                Instances For

                                                                                                                  If f : M →+ N is a Localization map for a Submonoid S and k : N ≃+ P is an isomorphism of AddCommMonoids, k ∘ f is a Localization map for M at S.

                                                                                                                  Equations
                                                                                                                  Instances For
                                                                                                                    abbrev AddSubmonoid.LocalizationMap.ofAddEquivOfLocalizations.match_1 {N : Type u_1} [AddCommMonoid N] {P : Type u_2} [AddCommMonoid P] (k : N ≃+ P) (v : P) (motive : (∃ (a : N), k.toEquiv a = v)Prop) :
                                                                                                                    ∀ (x : ∃ (a : N), k.toEquiv a = v), (∀ (z : N) (hz : k.toEquiv z = v), motive )motive x
                                                                                                                    Equations
                                                                                                                    • =
                                                                                                                    Instances For
                                                                                                                      theorem AddSubmonoid.LocalizationMap.ofAddEquivOfLocalizations.proof_3 {M : Type u_3} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_1} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) (k : N ≃+ P) (x : M) (y : M) :
                                                                                                                      k ((AddSubmonoid.LocalizationMap.toMap f) x) = k ((AddSubmonoid.LocalizationMap.toMap f) y)∃ (c : S), c + x = c + y

                                                                                                                      If f : M →* N is a Localization map for a Submonoid S and k : N ≃* P is an isomorphism of CommMonoids, k ∘ f is a Localization map for M at S.

                                                                                                                      Equations
                                                                                                                      Instances For
                                                                                                                        abbrev AddSubmonoid.LocalizationMap.ofAddEquivOfDom.match_1 {M : Type u_2} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_1} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : AddSubmonoid.LocalizationMap S N) {T : AddSubmonoid P} {k : P ≃+ M} (H : AddSubmonoid.map (AddEquiv.toAddMonoidHom k) T = S) (y : T) (motive : IsAddUnit ((AddSubmonoid.LocalizationMap.toMap f) { val := k y, property := })Prop) :
                                                                                                                        ∀ (x : IsAddUnit ((AddSubmonoid.LocalizationMap.toMap f) { val := k y, property := })), (∀ (z : AddUnits N) (hz : z = (AddSubmonoid.LocalizationMap.toMap f) { val := k y, property := }), motive )motive x
                                                                                                                        Equations
                                                                                                                        • =
                                                                                                                        Instances For

                                                                                                                          Given AddCommMonoids M, P and AddSubmonoids S ⊆ M, T ⊆ P, if f : M →* N is a Localization map for S and k : P ≃+ M is an isomorphism of AddCommMonoids such that k(T) = S, f ∘ k is a Localization map for T.

                                                                                                                          Equations
                                                                                                                          Instances For
                                                                                                                            abbrev AddSubmonoid.LocalizationMap.ofAddEquivOfDom.match_3 {M : Type u_2} [AddCommMonoid M] {S : AddSubmonoid M} {P : Type u_1} [AddCommMonoid P] {k : P ≃+ M} (x : M × S) (motive : (∃ (a : P), k.toEquiv a = x.1)Prop) :
                                                                                                                            ∀ (x_1 : ∃ (a : P), k.toEquiv a = x.1), (∀ (v : P) (hv : k.toEquiv v = x.1), motive )motive x_1
                                                                                                                            Equations
                                                                                                                            • =
                                                                                                                            Instances For
                                                                                                                              abbrev AddSubmonoid.LocalizationMap.ofAddEquivOfDom.match_2 {M : Type u_2} [AddCommMonoid M] {S : AddSubmonoid M} {P : Type u_1} [AddCommMonoid P] {k : P ≃+ M} (x : M × S) (motive : (∃ (a : P), k.toEquiv a = x.2)Prop) :
                                                                                                                              ∀ (x_1 : ∃ (a : P), k.toEquiv a = x.2), (∀ (w : P) (hw : k.toEquiv w = x.2), motive )motive x_1
                                                                                                                              Equations
                                                                                                                              • =
                                                                                                                              Instances For
                                                                                                                                abbrev AddSubmonoid.LocalizationMap.ofAddEquivOfDom.match_4 {M : Type u_2} [AddCommMonoid M] {S : AddSubmonoid M} {P : Type u_1} [AddCommMonoid P] {k : P ≃+ M} (c : S) (motive : (∃ (a : P), k.toEquiv a = c)Prop) :
                                                                                                                                ∀ (x : ∃ (a : P), k.toEquiv a = c), (∀ (d : P) (hd : k.toEquiv d = c), motive )motive x
                                                                                                                                Equations
                                                                                                                                • =
                                                                                                                                Instances For
                                                                                                                                  abbrev AddSubmonoid.LocalizationMap.ofAddEquivOfDom.match_5 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {P : Type u_2} [AddCommMonoid P] {k : P ≃+ M} (x : P) (y : P) (motive : (∃ (c : S), c + (AddEquiv.toAddMonoidHom k) x = c + (AddEquiv.toAddMonoidHom k) y)Prop) :
                                                                                                                                  ∀ (x_1 : ∃ (c : S), c + (AddEquiv.toAddMonoidHom k) x = c + (AddEquiv.toAddMonoidHom k) y), (∀ (c : S) (hc : c + (AddEquiv.toAddMonoidHom k) x = c + (AddEquiv.toAddMonoidHom k) y), motive )motive x_1
                                                                                                                                  Equations
                                                                                                                                  • =
                                                                                                                                  Instances For

                                                                                                                                    Given CommMonoids M, P and Submonoids S ⊆ M, T ⊆ P, if f : M →* N is a Localization map for S and k : P ≃* M is an isomorphism of CommMonoids such that k(T) = S, f ∘ k is a Localization map for T.

                                                                                                                                    Equations
                                                                                                                                    Instances For
                                                                                                                                      @[simp]

                                                                                                                                      A special case of f ∘ id = f, f a Localization map.

                                                                                                                                      abbrev AddSubmonoid.LocalizationMap.ofAddEquivOfDom_id.match_1 {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} (x : M) (motive : x AddSubmonoid.map (AddEquiv.toAddMonoidHom (AddEquiv.refl M)) SProp) :
                                                                                                                                      ∀ (x_1 : x AddSubmonoid.map (AddEquiv.toAddMonoidHom (AddEquiv.refl M)) S), (∀ (w : M) (hy : w S) (h : (AddEquiv.toAddMonoidHom (AddEquiv.refl M)) w = x), motive )motive x_1
                                                                                                                                      Equations
                                                                                                                                      • =
                                                                                                                                      Instances For
                                                                                                                                        @[simp]

                                                                                                                                        A special case of f ∘ id = f, f a Localization map.

                                                                                                                                        Given Localization maps f : M →+ N, k : P →+ U for Submonoids S, T respectively, an isomorphism j : M ≃+ P such that j(S) = T induces an isomorphism of localizations N ≃+ U.

                                                                                                                                        Equations
                                                                                                                                        Instances For
                                                                                                                                          noncomputable def Submonoid.LocalizationMap.mulEquivOfMulEquiv {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] (k : Submonoid.LocalizationMap T Q) {j : M ≃* P} (H : Submonoid.map (MulEquiv.toMonoidHom j) S = T) :
                                                                                                                                          N ≃* Q

                                                                                                                                          Given Localization maps f : M →* N, k : P →* U for Submonoids S, T respectively, an isomorphism j : M ≃* P such that j(S) = T induces an isomorphism of localizations N ≃* U.

                                                                                                                                          Equations
                                                                                                                                          Instances For
                                                                                                                                            @[simp]
                                                                                                                                            theorem Submonoid.LocalizationMap.mulEquivOfMulEquiv_mk' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : Submonoid.LocalizationMap S N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : Submonoid.LocalizationMap T Q} {j : M ≃* P} (H : Submonoid.map (MulEquiv.toMonoidHom j) S = T) (x : M) (y : S) :
                                                                                                                                            theorem AddLocalization.addMonoidOf.proof_3 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) (z : AddLocalization S) :
                                                                                                                                            ∃ (x : M × S), z + { toZeroHom := { toFun := fun (x : M) => AddLocalization.mk x 0, map_zero' := }, map_add' := }.toFun x.2 = { toZeroHom := { toFun := fun (x : M) => AddLocalization.mk x 0, map_zero' := }, map_add' := }.toFun x.1
                                                                                                                                            theorem AddLocalization.addMonoidOf.proof_1 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) (x : M) (y : M) :
                                                                                                                                            { toFun := fun (x : M) => AddLocalization.mk x 0, map_zero' := }.toFun (x + y) = { toFun := fun (x : M) => AddLocalization.mk x 0, map_zero' := }.toFun x + { toFun := fun (x : M) => AddLocalization.mk x 0, map_zero' := }.toFun y

                                                                                                                                            Natural homomorphism sending x : M, M an AddCommMonoid, to the equivalence class of (x, 0) in the Localization of M at a Submonoid.

                                                                                                                                            Equations
                                                                                                                                            • One or more equations did not get rendered due to their size.
                                                                                                                                            Instances For
                                                                                                                                              theorem AddLocalization.addMonoidOf.proof_4 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) (x : M) (y : M) :
                                                                                                                                              { toZeroHom := { toFun := fun (x : M) => AddLocalization.mk x 0, map_zero' := }, map_add' := }.toFun x = { toZeroHom := { toFun := fun (x : M) => AddLocalization.mk x 0, map_zero' := }, map_add' := }.toFun y∃ (c : S), c + x = c + y
                                                                                                                                              theorem AddLocalization.addMonoidOf.proof_2 {M : Type u_1} [AddCommMonoid M] (S : AddSubmonoid M) (y : S) :
                                                                                                                                              IsAddUnit ({ toZeroHom := { toFun := fun (x : M) => AddLocalization.mk x 0, map_zero' := }, map_add' := }.toFun y)

                                                                                                                                              Natural homomorphism sending x : M, M a CommMonoid, to the equivalence class of (x, 1) in the Localization of M at a Submonoid.

                                                                                                                                              Equations
                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                              Instances For
                                                                                                                                                @[simp]
                                                                                                                                                theorem AddLocalization.liftOn_mk' {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u} (f : MSp) (H : ∀ {a c : M} {b d : S}, (AddLocalization.r S) (a, b) (c, d)f a b = f c d) (a : M) (b : S) :
                                                                                                                                                @[simp]
                                                                                                                                                theorem Localization.liftOn_mk' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (f : MSp) (H : ∀ {a c : M} {b d : S}, (Localization.r S) (a, b) (c, d)f a b = f c d) (a : M) (b : S) :
                                                                                                                                                @[simp]
                                                                                                                                                theorem AddLocalization.liftOn₂_mk' {M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u_4} (f : MSMSp) (H : ∀ {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (AddLocalization.r S) (a, b) (a', b')(AddLocalization.r S) (c, d) (c', d')f a b c d = f a' b' c' d') (a : M) (c : M) (b : S) (d : S) :
                                                                                                                                                @[simp]
                                                                                                                                                theorem Localization.liftOn₂_mk' {M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u_4} (f : MSMSp) (H : ∀ {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (Localization.r S) (a, b) (a', b')(Localization.r S) (c, d) (c', d')f a b c d = f a' b' c' d') (a : M) (c : M) (b : S) (d : S) :

                                                                                                                                                Given a Localization map f : M →+ N for a Submonoid S, we get an isomorphism between the Localization of M at S as a quotient type and N.

                                                                                                                                                Equations
                                                                                                                                                Instances For
                                                                                                                                                  noncomputable def Localization.mulEquivOfQuotient {M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : Submonoid.LocalizationMap S N) :

                                                                                                                                                  Given a Localization map f : M →* N for a Submonoid S, we get an isomorphism between the Localization of M at S as a quotient type and N.

                                                                                                                                                  Equations
                                                                                                                                                  Instances For
                                                                                                                                                    @[reducible]
                                                                                                                                                    def AddLocalization.Away {M : Type u_1} [AddCommMonoid M] (x : M) :
                                                                                                                                                    Type u_1

                                                                                                                                                    Given x : M, the Localization of M at the Submonoid generated by x, as a quotient.

                                                                                                                                                    Equations
                                                                                                                                                    Instances For
                                                                                                                                                      @[reducible]
                                                                                                                                                      def Localization.Away {M : Type u_1} [CommMonoid M] (x : M) :
                                                                                                                                                      Type u_1

                                                                                                                                                      Given x : M, the Localization of M at the Submonoid generated by x, as a quotient.

                                                                                                                                                      Equations
                                                                                                                                                      Instances For

                                                                                                                                                        Given x : M, negSelf is -x in the Localization (as a quotient type) of M at the Submonoid generated by x.

                                                                                                                                                        Equations
                                                                                                                                                        Instances For

                                                                                                                                                          Given x : M, invSelf is x⁻¹ in the Localization (as a quotient type) of M at the Submonoid generated by x.

                                                                                                                                                          Equations
                                                                                                                                                          Instances For
                                                                                                                                                            @[reducible]

                                                                                                                                                            Given x : M, the natural hom sending y : M, M an AddCommMonoid, to the equivalence class of (y, 0) in the Localization of M at the Submonoid generated by x.

                                                                                                                                                            Equations
                                                                                                                                                            Instances For
                                                                                                                                                              @[reducible]

                                                                                                                                                              Given x : M, the natural hom sending y : M, M a CommMonoid, to the equivalence class of (y, 1) in the Localization of M at the Submonoid generated by x.

                                                                                                                                                              Equations
                                                                                                                                                              Instances For

                                                                                                                                                                Given x : M and a Localization map f : M →+ N away from x, we get an isomorphism between the Localization of M at the Submonoid generated by x as a quotient type and N.

                                                                                                                                                                Equations
                                                                                                                                                                Instances For

                                                                                                                                                                  Given x : M and a Localization map f : M →* N away from x, we get an isomorphism between the Localization of M at the Submonoid generated by x as a quotient type and N.

                                                                                                                                                                  Equations
                                                                                                                                                                  Instances For

                                                                                                                                                                    If S contains 0 then the localization at S is trivial.

                                                                                                                                                                    The type of homomorphisms between monoids with zero satisfying the characteristic predicate: if f : M →*₀ N satisfies this predicate, then N is isomorphic to the localization of M at S.

                                                                                                                                                                    • toFun : MN
                                                                                                                                                                    • map_one' : self.toFun 1 = 1
                                                                                                                                                                    • map_mul' : ∀ (x y : M), self.toFun (x * y) = self.toFun x * self.toFun y
                                                                                                                                                                    • map_units' : ∀ (y : S), IsUnit (self.toFun y)
                                                                                                                                                                    • surj' : ∀ (z : N), ∃ (x : M × S), z * self.toFun x.2 = self.toFun x.1
                                                                                                                                                                    • exists_of_eq : ∀ (x y : M), self.toFun x = self.toFun y∃ (c : S), c * x = c * y
                                                                                                                                                                    • map_zero' : self.toFun 0 = 0
                                                                                                                                                                    Instances For

                                                                                                                                                                      The monoid with zero hom underlying a LocalizationMap.

                                                                                                                                                                      Equations
                                                                                                                                                                      Instances For
                                                                                                                                                                        @[irreducible]

                                                                                                                                                                        The zero element in a Localization is defined as (0, 1).

                                                                                                                                                                        Should not be confused with AddLocalization.zero which is (0, 0).

                                                                                                                                                                        Equations
                                                                                                                                                                        Instances For
                                                                                                                                                                          theorem Localization.mk_zero {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} (x : S) :
                                                                                                                                                                          Equations
                                                                                                                                                                          theorem Localization.liftOn_zero {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {p : Type u_4} (f : MSp) (H : ∀ {a c : M} {b d : S}, (Localization.r S) (a, b) (c, d)f a b = f c d) :
                                                                                                                                                                          noncomputable def Submonoid.LocalizationWithZeroMap.lift {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {P : Type u_3} [CommMonoidWithZero P] (f : Submonoid.LocalizationWithZeroMap S N) (g : M →*₀ P) (hg : ∀ (y : S), IsUnit (g y)) :

                                                                                                                                                                          Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M and a map of CommMonoidWithZeros g : M →*₀ P such that g y is invertible for all y : S, the homomorphism induced from N to P sending z : N to g x * (g y)⁻¹, where (x, y) : M × S are such that z = f x * (f y)⁻¹.

                                                                                                                                                                          Equations
                                                                                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                                                                                          Instances For

                                                                                                                                                                            Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M, if M is left cancellative monoid with zero, and all elements of S are left regular, then N is a left cancellative monoid with zero.

                                                                                                                                                                            Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M, if M is a cancellative monoid with zero, and all elements of S are regular, then N is a cancellative monoid with zero.

                                                                                                                                                                            @[deprecated Submonoid.LocalizationWithZeroMap.isLeftRegular_of_le_isCancelMulZero]

                                                                                                                                                                            Alias of Submonoid.LocalizationWithZeroMap.isLeftRegular_of_le_isCancelMulZero.


                                                                                                                                                                            Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M, if M is a cancellative monoid with zero, and all elements of S are regular, then N is a cancellative monoid with zero.

                                                                                                                                                                            theorem Localization.mk_left_injective {α : Type u_1} [CancelCommMonoid α] {s : Submonoid α} (b : s) :
                                                                                                                                                                            theorem AddLocalization.mk_eq_mk_iff' {α : Type u_1} [AddCancelCommMonoid α] {s : AddSubmonoid α} {a₁ : α} {b₁ : α} {a₂ : s} {b₂ : s} :
                                                                                                                                                                            AddLocalization.mk a₁ a₂ = AddLocalization.mk b₁ b₂ b₂ + a₁ = a₂ + b₁
                                                                                                                                                                            theorem Localization.mk_eq_mk_iff' {α : Type u_1} [CancelCommMonoid α] {s : Submonoid α} {a₁ : α} {b₁ : α} {a₂ : s} {b₂ : s} :
                                                                                                                                                                            Localization.mk a₁ a₂ = Localization.mk b₁ b₂ b₂ * a₁ = a₂ * b₁
                                                                                                                                                                            Equations
                                                                                                                                                                            theorem AddLocalization.decidableEq.proof_1 {α : Type u_1} [AddCancelCommMonoid α] {s : AddSubmonoid α} (a : α) (c : α) (b : s) (d : s) :
                                                                                                                                                                            Equations

                                                                                                                                                                            Order #

                                                                                                                                                                            theorem AddLocalization.le.proof_1 {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} (a₁ : α) (b₁ : α) (a₂ : s) (b₂ : s) (c₁ : α) (d₁ : α) (c₂ : s) (d₂ : s) (hab : (AddLocalization.r s) (a₁, a₂) (b₁, b₂)) (hcd : (AddLocalization.r s) (c₁, c₂) (d₁, d₂)) :
                                                                                                                                                                            (fun (a₁ : α) (a₂ : s) (b₁ : α) (b₂ : s) => b₂ + a₁ a₂ + b₁) a₁ a₂ c₁ c₂ = (fun (a₁ : α) (a₂ : s) (b₁ : α) (b₂ : s) => b₂ + a₁ a₂ + b₁) b₁ b₂ d₁ d₂
                                                                                                                                                                            Equations
                                                                                                                                                                            instance Localization.le {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} :
                                                                                                                                                                            Equations
                                                                                                                                                                            theorem AddLocalization.lt.proof_1 {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} (a₁ : α) (b₁ : α) (a₂ : s) (b₂ : s) (c₁ : α) (d₁ : α) (c₂ : s) (d₂ : s) (hab : (AddLocalization.r s) (a₁, a₂) (b₁, b₂)) (hcd : (AddLocalization.r s) (c₁, c₂) (d₁, d₂)) :
                                                                                                                                                                            (fun (a₁ : α) (a₂ : s) (b₁ : α) (b₂ : s) => b₂ + a₁ < a₂ + b₁) a₁ a₂ c₁ c₂ = (fun (a₁ : α) (a₂ : s) (b₁ : α) (b₂ : s) => b₂ + a₁ < a₂ + b₁) b₁ b₂ d₁ d₂
                                                                                                                                                                            Equations
                                                                                                                                                                            instance Localization.lt {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} :
                                                                                                                                                                            Equations
                                                                                                                                                                            theorem AddLocalization.mk_le_mk {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} {a₁ : α} {b₁ : α} {a₂ : s} {b₂ : s} :
                                                                                                                                                                            AddLocalization.mk a₁ a₂ AddLocalization.mk b₁ b₂ b₂ + a₁ a₂ + b₁
                                                                                                                                                                            theorem Localization.mk_le_mk {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} {a₁ : α} {b₁ : α} {a₂ : s} {b₂ : s} :
                                                                                                                                                                            Localization.mk a₁ a₂ Localization.mk b₁ b₂ b₂ * a₁ a₂ * b₁
                                                                                                                                                                            theorem AddLocalization.mk_lt_mk {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} {a₁ : α} {b₁ : α} {a₂ : s} {b₂ : s} :
                                                                                                                                                                            AddLocalization.mk a₁ a₂ < AddLocalization.mk b₁ b₂ b₂ + a₁ < a₂ + b₁
                                                                                                                                                                            theorem Localization.mk_lt_mk {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} {a₁ : α} {b₁ : α} {a₂ : s} {b₂ : s} :
                                                                                                                                                                            Localization.mk a₁ a₂ < Localization.mk b₁ b₂ b₂ * a₁ < a₂ * b₁
                                                                                                                                                                            Equations
                                                                                                                                                                            Equations
                                                                                                                                                                            Equations
                                                                                                                                                                            Equations
                                                                                                                                                                            theorem AddLocalization.decidableLE.proof_1 {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} (a : α) (c : α) (b : s) (d : s) :
                                                                                                                                                                            instance AddLocalization.decidableLE {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} [DecidableRel fun (x x_1 : α) => x x_1] :
                                                                                                                                                                            DecidableRel fun (x x_1 : AddLocalization s) => x x_1
                                                                                                                                                                            Equations
                                                                                                                                                                            instance Localization.decidableLE {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} [DecidableRel fun (x x_1 : α) => x x_1] :
                                                                                                                                                                            DecidableRel fun (x x_1 : Localization s) => x x_1
                                                                                                                                                                            Equations
                                                                                                                                                                            theorem AddLocalization.decidableLT.proof_1 {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} (a : α) (c : α) (b : s) (d : s) :
                                                                                                                                                                            instance AddLocalization.decidableLT {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} [DecidableRel fun (x x_1 : α) => x < x_1] :
                                                                                                                                                                            DecidableRel fun (x x_1 : AddLocalization s) => x < x_1
                                                                                                                                                                            Equations
                                                                                                                                                                            instance Localization.decidableLT {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} [DecidableRel fun (x x_1 : α) => x < x_1] :
                                                                                                                                                                            DecidableRel fun (x x_1 : Localization s) => x < x_1
                                                                                                                                                                            Equations
                                                                                                                                                                            theorem AddLocalization.mkOrderEmbedding.proof_2 {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} (b : s) {a : α} {b : α} :

                                                                                                                                                                            An ordered cancellative monoid injects into its localization by sending a to a - b.

                                                                                                                                                                            Equations
                                                                                                                                                                            Instances For

                                                                                                                                                                              An ordered cancellative monoid injects into its localization by sending a to a / b.

                                                                                                                                                                              Equations
                                                                                                                                                                              Instances For