Documentation

Mathlib.GroupTheory.Perm.Finite

Permutations on Fintypes #

This file contains miscellaneous lemmas about Equiv.Perm and Equiv.swap, building on top of those in Data/Equiv/Basic and other files in GroupTheory/Perm/*.

theorem Equiv.Perm.isConj_of_support_equiv {α : Type u} [DecidableEq α] [Fintype α] {σ : Equiv.Perm α} {τ : Equiv.Perm α} (f : { x : α // x (Equiv.Perm.support σ) } { x : α // x (Equiv.Perm.support τ) }) (hf : ∀ (x : α) (hx : x (Equiv.Perm.support σ)), (f { val := σ x, property := }) = τ (f { val := x, property := hx })) :
IsConj σ τ
theorem Equiv.Perm.perm_inv_on_of_perm_on_finset {α : Type u} {s : Finset α} {f : Equiv.Perm α} (h : xs, f x s) {y : α} (hy : y s) :
f⁻¹ y s
theorem Equiv.Perm.perm_inv_mapsTo_of_mapsTo {α : Type u} (f : Equiv.Perm α) {s : Set α} [Finite s] (h : Set.MapsTo (f) s s) :
Set.MapsTo (f⁻¹) s s
@[simp]
theorem Equiv.Perm.perm_inv_mapsTo_iff_mapsTo {α : Type u} {f : Equiv.Perm α} {s : Set α} [Finite s] :
Set.MapsTo (f⁻¹) s s Set.MapsTo (f) s s
theorem Equiv.Perm.perm_inv_on_of_perm_on_finite {α : Type u} {f : Equiv.Perm α} {p : αProp} [Finite { x : α // p x }] (h : ∀ (x : α), p xp (f x)) {x : α} (hx : p x) :
p (f⁻¹ x)
@[inline, reducible]
abbrev Equiv.Perm.subtypePermOfFintype {α : Type u} (f : Equiv.Perm α) {p : αProp} [Finite { x : α // p x }] (h : ∀ (x : α), p xp (f x)) :
Equiv.Perm { x : α // p x }

If the permutation f maps {x // p x} into itself, then this returns the permutation on {x // p x} induced by f. Note that the h hypothesis is weaker than for Equiv.Perm.subtypePerm.

Equations
Instances For
    @[simp]
    theorem Equiv.Perm.subtypePermOfFintype_apply {α : Type u} (f : Equiv.Perm α) {p : αProp} [Finite { x : α // p x }] (h : ∀ (x : α), p xp (f x)) (x : { x : α // p x }) :
    (Equiv.Perm.subtypePermOfFintype f h) x = { val := f x, property := }
    theorem Equiv.Perm.subtypePermOfFintype_one {α : Type u} (p : αProp) [Finite { x : α // p x }] (h : ∀ (x : α), p xp (1 x)) :
    theorem Equiv.Perm.perm_mapsTo_inl_iff_mapsTo_inr {m : Type u_1} {n : Type u_2} [Finite m] [Finite n] (σ : Equiv.Perm (m n)) :
    Set.MapsTo (σ) (Set.range Sum.inl) (Set.range Sum.inl) Set.MapsTo (σ) (Set.range Sum.inr) (Set.range Sum.inr)
    theorem Equiv.Perm.Disjoint.orderOf {α : Type u} {σ : Equiv.Perm α} {τ : Equiv.Perm α} (hστ : Equiv.Perm.Disjoint σ τ) :
    orderOf (σ * τ) = Nat.lcm (orderOf σ) (orderOf τ)
    theorem Equiv.Perm.Disjoint.isConj_mul {α : Type u} [Finite α] {σ : Equiv.Perm α} {τ : Equiv.Perm α} {π : Equiv.Perm α} {ρ : Equiv.Perm α} (hc1 : IsConj σ π) (hc2 : IsConj τ ρ) (hd1 : Equiv.Perm.Disjoint σ τ) (hd2 : Equiv.Perm.Disjoint π ρ) :
    IsConj (σ * τ) (π * ρ)