@[deprecated]
Implication →
is transitive. If P → Q
and Q → R
then P → R
.
@[deprecated]
theorem
trans_rel_left
{α : Sort u}
{a : α}
{b : α}
{c : α}
(r : α → α → Prop)
(h₁ : r a b)
(h₂ : b = c)
:
r a c
@[deprecated]
theorem
trans_rel_right
{α : Sort u}
{a : α}
{b : α}
{c : α}
(r : α → α → Prop)
(h₁ : a = b)
(h₂ : r b c)
:
r a c
Alias of the forward direction of not_not_not
.
Equations
- ExistsUnique p = ∃ (x : α), p x ∧ ∀ (y : α), p y → y = x
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Pretty-printing for ExistsUnique
, following the same pattern as pretty printing
for Exists
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ExistsUnique.intro
{α : Sort u_1}
{p : α → Prop}
(w : α)
(h₁ : p w)
(h₂ : ∀ (y : α), p y → y = w)
:
∃! (x : α), p x
theorem
exists_unique_of_exists_of_unique
{α : Sort u}
{p : α → Prop}
(hex : ∃ (x : α), p x)
(hunique : ∀ (y₁ y₂ : α), p y₁ → p y₂ → y₁ = y₂)
:
∃! (x : α), p x
theorem
ExistsUnique.unique
{α : Sort u}
{p : α → Prop}
(h : ∃! (x : α), p x)
{y₁ : α}
{y₂ : α}
(py₁ : p y₁)
(py₂ : p y₂)
:
y₁ = y₂
def
Decidable.recOn_true
(p : Prop)
[h : Decidable p]
{h₁ : p → Sort u}
{h₂ : ¬p → Sort u}
(h₃ : p)
(h₄ : h₁ h₃)
:
Decidable.recOn h h₂ h₁
Equations
- Decidable.recOn_true p h₃ h₄ = cast ⋯ h₄
Instances For
def
Decidable.recOn_false
(p : Prop)
[h : Decidable p]
{h₁ : p → Sort u}
{h₂ : ¬p → Sort u}
(h₃ : ¬p)
(h₄ : h₂ h₃)
:
Decidable.recOn h h₂ h₁
Equations
- Decidable.recOn_false p h₃ h₄ = cast ⋯ h₄
Instances For
Alias of Decidable.byCases
.
Synonym for dite
(dependent if-then-else). We can construct an element q
(of any sort, not just a proposition) by cases on whether p
is true or false,
provided p
is decidable.
Equations
Instances For
Alias of Decidable.byContradiction
.
Equations
Instances For
theorem
rec_subsingleton
{p : Prop}
[h : Decidable p]
{h₁ : p → Sort u}
{h₂ : ¬p → Sort u}
[h₃ : ∀ (h : p), Subsingleton (h₁ h)]
[h₄ : ∀ (h : ¬p), Subsingleton (h₂ h)]
:
Subsingleton (Decidable.recOn h h₂ h₁)
A relation is transitive if x ≺ y
and y ≺ z
together imply x ≺ z
.
Equations
- Transitive r = ∀ ⦃x y z : β⦄, r x y → r y z → r x z
Instances For
A relation is antisymmetric if x ≺ y
and y ≺ x
together imply that x = y
.
Equations
- AntiSymmetric r = ∀ ⦃x y : β⦄, r x y → r y x → x = y
Instances For
theorem
InvImage.trans
{α : Sort u}
{β : Sort v}
(r : β → β → Prop)
(f : α → β)
(h : Transitive r)
:
Transitive (InvImage r f)
theorem
InvImage.irreflexive
{α : Sort u}
{β : Sort v}
(r : β → β → Prop)
(f : α → β)
(h : Irreflexive r)
:
Irreflexive (InvImage r f)
Equations
- Commutative f = ∀ (a b : α), f a b = f b a
Instances For
Equations
- Associative f = ∀ (a b c : α), f (f a b) c = f a (f b c)
Instances For
Equations
- LeftIdentity f one = ∀ (a : α), f one a = a
Instances For
Equations
- RightIdentity f one = ∀ (a : α), f a one = a
Instances For
Equations
- RightInverse f inv one = ∀ (a : α), f a (inv a) = one
Instances For
Equations
- LeftCancelative f = ∀ (a b c : α), f a b = f a c → b = c
Instances For
Equations
- RightCancelative f = ∀ (a b c : α), f a b = f c b → a = c
Instances For
Equations
- LeftDistributive f g = ∀ (a b c : α), f a (g b c) = g (f a b) (f a c)
Instances For
Equations
- RightDistributive f g = ∀ (a b c : α), f (g a b) c = g (f a c) (f b c)
Instances For
Equations
- RightCommutative h = ∀ (b : β) (a₁ a₂ : α), h (h b a₁) a₂ = h (h b a₂) a₁
Instances For
Equations
- LeftCommutative h = ∀ (a₁ a₂ : α) (b : β), h a₁ (h a₂ b) = h a₂ (h a₁ b)