Quot #
Some induction principles tagged with elab_as_elim
, since the attribute is missing in core.
@[inline, reducible]
abbrev
Quot.recOn'
{α : Sort u}
{r : α → α → Prop}
{motive : Quot r → Sort v}
(q : Quot r)
(f : (a : α) → motive (Quot.mk r a))
(h : ∀ (a b : α) (p : r a b), ⋯ ▸ f a = f b)
:
motive q
Dependent recursion principle for Quot
. This constructor can be tricky to use,
so you should consider the simpler versions if they apply:
Quot.lift
, for nondependent functionsQuot.ind
, for theorems / proofs of propositions about quotientsQuot.recOnSubsingleton
, when the target type is aSubsingleton
Quot.hrecOn
, which usesHEq (f a) (f b)
instead of asound p ▸ f a = f b
assummption
Equations
- Quot.recOn' q f h = Quot.rec f h q
Instances For
@[inline, reducible]
abbrev
Quot.recOnSubsingleton'
{α : Sort u}
{r : α → α → Prop}
{motive : Quot r → Sort v}
[h : ∀ (a : α), Subsingleton (motive (Quot.mk r a))]
(q : Quot r)
(f : (a : α) → motive (Quot.mk r a))
:
motive q
Version of Quot.recOnSubsingleton
tagged with elab_as_elim
Equations
- Quot.recOnSubsingleton' q f = Quot.rec (fun (a : α) => f a) ⋯ q