Dual submodule with respect to a bilinear form. #
Main definitions and results #
BilinForm.dualSubmodule
: The dual submodule with respect to a bilinear form.BilinForm.dualSubmodule_span_of_basis
: The dual of a lattice is spanned by the dual basis.
TODO #
Properly develop the material in the context of lattices.
def
BilinForm.dualSubmodule
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
(N : Submodule R M)
:
Submodule R M
The dual submodule of a submodule with respect to a bilinear form.
Equations
- BilinForm.dualSubmodule B N = { toAddSubmonoid := { toAddSubsemigroup := { carrier := {x : M | ∀ y ∈ N, B.bilin x y ∈ 1}, add_mem' := ⋯ }, zero_mem' := ⋯ }, smul_mem' := ⋯ }
Instances For
theorem
BilinForm.mem_dualSubmodule
{R : Type u_1}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
{N : Submodule R M}
{x : M}
:
x ∈ BilinForm.dualSubmodule B N ↔ ∀ y ∈ N, B.bilin x y ∈ 1
theorem
BilinForm.le_flip_dualSubmodule
{R : Type u_1}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
{N₁ : Submodule R M}
{N₂ : Submodule R M}
:
N₁ ≤ BilinForm.dualSubmodule (BilinForm.flip B) N₂ ↔ N₂ ≤ BilinForm.dualSubmodule B N₁
noncomputable def
BilinForm.dualSubmoduleParing
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
{N : Submodule R M}
(x : ↥(BilinForm.dualSubmodule B N))
(y : ↥N)
:
R
The natural paring of B.dualSubmodule N
and N
.
This is bundled as a bilinear map in BilinForm.dualSubmoduleToDual
.
Equations
Instances For
@[simp]
theorem
BilinForm.dualSubmoduleParing_spec
{R : Type u_1}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
{N : Submodule R M}
(x : ↥(BilinForm.dualSubmodule B N))
(y : ↥N)
:
(algebraMap R S) (BilinForm.dualSubmoduleParing B x y) = B.bilin ↑x ↑y
@[simp]
theorem
BilinForm.dualSubmoduleToDual_apply_apply
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
[NoZeroSMulDivisors R S]
(N : Submodule R M)
(x : ↥(BilinForm.dualSubmodule B N))
(y : ↥N)
:
((BilinForm.dualSubmoduleToDual B N) x) y = BilinForm.dualSubmoduleParing B x y
noncomputable def
BilinForm.dualSubmoduleToDual
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
[NoZeroSMulDivisors R S]
(N : Submodule R M)
:
↥(BilinForm.dualSubmodule B N) →ₗ[R] Module.Dual R ↥N
The natural paring of B.dualSubmodule N
and N
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
BilinForm.dualSubmoduleToDual_injective
{R : Type u_3}
{S : Type u_2}
{M : Type u_1}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
(hB : BilinForm.Nondegenerate B)
[NoZeroSMulDivisors R S]
(N : Submodule R M)
(hN : Submodule.span S ↑N = ⊤)
:
theorem
BilinForm.dualSubmodule_span_of_basis
{R : Type u_4}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
{ι : Type u_1}
[Finite ι]
[DecidableEq ι]
(hB : BilinForm.Nondegenerate B)
(b : Basis ι S M)
:
BilinForm.dualSubmodule B (Submodule.span R (Set.range ⇑b)) = Submodule.span R (Set.range ⇑(BilinForm.dualBasis B hB b))
theorem
BilinForm.dualSubmodule_dualSubmodule_flip_of_basis
{R : Type u_4}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
{ι : Type u_1}
[Finite ι]
(hB : BilinForm.Nondegenerate B)
(b : Basis ι S M)
:
BilinForm.dualSubmodule B (BilinForm.dualSubmodule (BilinForm.flip B) (Submodule.span R (Set.range ⇑b))) = Submodule.span R (Set.range ⇑b)
theorem
BilinForm.dualSubmodule_flip_dualSubmodule_of_basis
{R : Type u_4}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
{ι : Type u_1}
[Finite ι]
(hB : BilinForm.Nondegenerate B)
(b : Basis ι S M)
:
BilinForm.dualSubmodule (BilinForm.flip B) (BilinForm.dualSubmodule B (Submodule.span R (Set.range ⇑b))) = Submodule.span R (Set.range ⇑b)
theorem
BilinForm.dualSubmodule_dualSubmodule_of_basis
{R : Type u_4}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : BilinForm S M)
{ι : Type u_1}
[Finite ι]
(hB : BilinForm.Nondegenerate B)
(hB' : BilinForm.IsSymm B)
(b : Basis ι S M)
:
BilinForm.dualSubmodule B (BilinForm.dualSubmodule B (Submodule.span R (Set.range ⇑b))) = Submodule.span R (Set.range ⇑b)