Documentation

Mathlib.MeasureTheory.Measure.MutuallySingular

Mutually singular measures #

Two measures μ, ν are said to be mutually singular (MeasureTheory.Measure.MutuallySingular, localized notation μ ⟂ₘ ν) if there exists a measurable set s such that μ s = 0 and ν sᶜ = 0. The measurability of s is an unnecessary assumption (see MeasureTheory.Measure.MutuallySingular.mk) but we keep it because this way rcases (h : μ ⟂ₘ ν) gives us a measurable set and usually it is easy to prove measurability.

In this file we define the predicate MeasureTheory.Measure.MutuallySingular and prove basic facts about it.

Tags #

measure, mutually singular

Two measures μ, ν are said to be mutually singular if there exists a measurable set s such that μ s = 0 and ν sᶜ = 0.

Equations
Instances For

    Two measures μ, ν are said to be mutually singular if there exists a measurable set s such that μ s = 0 and ν sᶜ = 0.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem MeasureTheory.Measure.MutuallySingular.mk {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {s : Set α} {t : Set α} (hs : μ s = 0) (ht : ν t = 0) (hst : Set.univ s t) :
      theorem MeasureTheory.Measure.MutuallySingular.mono {α : Type u_1} {m0 : MeasurableSpace α} {μ₁ : MeasureTheory.Measure α} {μ₂ : MeasureTheory.Measure α} {ν₁ : MeasureTheory.Measure α} {ν₂ : MeasureTheory.Measure α} (h : MeasureTheory.Measure.MutuallySingular μ₁ ν₁) (hμ : μ₂ μ₁) (hν : ν₂ ν₁) :