Documentation

Mathlib.Order.Filter.Ker

Kernel of a filter #

In this file we define the kernel Filter.ker f of a filter f to be the intersection of all its sets.

We also prove that Filter.principal and Filter.ker form a Galois coinsertion and prove other basic theorems about Filter.ker.

def Filter.ker {α : Type u_2} (f : Filter α) :
Set α

The kernel of a filter is the intersection of all its sets.

Equations
Instances For
    theorem Filter.ker_def {α : Type u_2} (f : Filter α) :
    Filter.ker f = ⋂ s ∈ f, s
    @[simp]
    theorem Filter.mem_ker {α : Type u_2} {f : Filter α} {a : α} :
    a Filter.ker f sf, a s
    @[simp]
    theorem Filter.subset_ker {α : Type u_2} {f : Filter α} {s : Set α} :
    s Filter.ker f tf, s t
    def Filter.gi_principal_ker {α : Type u_2} :
    GaloisCoinsertion Filter.principal Filter.ker

    Filter.principal forms a Galois coinsertion with Filter.ker.

    Equations
    Instances For
      theorem Filter.ker_mono {α : Type u_2} :
      Monotone Filter.ker
      @[simp]
      theorem Filter.ker_bot {α : Type u_2} :
      @[simp]
      theorem Filter.ker_top {α : Type u_2} :
      Filter.ker = Set.univ
      @[simp]
      theorem Filter.ker_eq_univ {α : Type u_2} {f : Filter α} :
      Filter.ker f = Set.univ f =
      @[simp]
      theorem Filter.ker_inf {α : Type u_2} (f : Filter α) (g : Filter α) :
      @[simp]
      theorem Filter.ker_iInf {ι : Sort u_1} {α : Type u_2} (f : ιFilter α) :
      Filter.ker (⨅ (i : ι), f i) = ⨅ (i : ι), Filter.ker (f i)
      @[simp]
      theorem Filter.ker_sInf {α : Type u_2} (S : Set (Filter α)) :
      Filter.ker (sInf S) = ⨅ f ∈ S, Filter.ker f
      @[simp]
      theorem Filter.ker_principal {α : Type u_2} (s : Set α) :
      @[simp]
      theorem Filter.ker_pure {α : Type u_2} (a : α) :
      Filter.ker (pure a) = {a}
      @[simp]
      theorem Filter.ker_comap {α : Type u_2} {β : Type u_3} (m : αβ) (f : Filter β) :