Subsingleton filters #
We say that a filter l
is a subsingleton if there exists a subsingleton set s ∈ l
.
Equivalently, l
is either ⊥
or pure a
for some a
.
We say that a filter is a subsingleton if there exists a subsingleton set that belongs to the filter.
Equations
- Filter.Subsingleton l = ∃ s ∈ l, Set.Subsingleton s
Instances For
theorem
Filter.HasBasis.subsingleton_iff
{α : Type u_1}
{l : Filter α}
{ι : Sort u_3}
{p : ι → Prop}
{s : ι → Set α}
(h : Filter.HasBasis l p s)
:
Filter.Subsingleton l ↔ ∃ (i : ι), p i ∧ Set.Subsingleton (s i)
theorem
Filter.Subsingleton.anti
{α : Type u_1}
{l : Filter α}
{l' : Filter α}
(hl : Filter.Subsingleton l)
(hl' : l' ≤ l)
:
theorem
Filter.Subsingleton.map
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
(hl : Filter.Subsingleton l)
(f : α → β)
:
theorem
Filter.Subsingleton.prod
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
(hl : Filter.Subsingleton l)
{l' : Filter β}
(hl' : Filter.Subsingleton l')
:
Filter.Subsingleton (l ×ˢ l')
theorem
Filter.Subsingleton.exists_eq_pure
{α : Type u_1}
{l : Filter α}
[Filter.NeBot l]
(hl : Filter.Subsingleton l)
:
A nontrivial subsingleton filter is equal to pure a
for some a
.
theorem
Filter.subsingleton_iff_exists_le_pure
{α : Type u_1}
{l : Filter α}
[Nonempty α]
:
Filter.Subsingleton l ↔ ∃ (a : α), l ≤ pure a
In a nonempty type, a filter is a subsingleton iff it is less than or equal to a pure filter.
theorem
Filter.subsingleton_iff_exists_singleton_mem
{α : Type u_1}
{l : Filter α}
[Nonempty α]
:
Filter.Subsingleton l ↔ ∃ (a : α), {a} ∈ l
theorem
Filter.Subsingleton.exists_le_pure
{α : Type u_1}
{l : Filter α}
[Nonempty α]
:
Filter.Subsingleton l → ∃ (a : α), l ≤ pure a
A subsingleton filter on a nonempty type is less than or equal to pure a
for some a
.
theorem
Filter.Subsingleton.isCountablyGenerated
{α : Type u_1}
{l : Filter α}
(hl : Filter.Subsingleton l)
: