Laurent Series #
Main Definitions #
- Defines
LaurentSeries
as an abbreviation forHahnSeries ℤ
. - Provides a coercion
PowerSeries R
intoLaurentSeries R
given byHahnSeries.ofPowerSeries
. - Defines
LaurentSeries.powerSeriesPart
- Defines the localization map
LaurentSeries.of_powerSeries_localization
which evaluates toHahnSeries.ofPowerSeries
.
@[inline, reducible]
A LaurentSeries
is implemented as a HahnSeries
with value group ℤ
.
Equations
- LaurentSeries R = HahnSeries ℤ R
Instances For
instance
LaurentSeries.instCoePowerSeriesLaurentSeriesToZeroToMonoidWithZero
{R : Type u_1}
[Semiring R]
:
Coe (PowerSeries R) (LaurentSeries R)
Equations
- LaurentSeries.instCoePowerSeriesLaurentSeriesToZeroToMonoidWithZero = { coe := ⇑(HahnSeries.ofPowerSeries ℤ R) }
@[simp]
theorem
LaurentSeries.coeff_coe_powerSeries
{R : Type u_1}
[Semiring R]
(x : PowerSeries R)
(n : ℕ)
:
((HahnSeries.ofPowerSeries ℤ R) x).coeff ↑n = (PowerSeries.coeff R n) x
This is a power series that can be multiplied by an integer power of X
to give our
Laurent series. If the Laurent series is nonzero, powerSeriesPart
has a nonzero
constant term.
Equations
- LaurentSeries.powerSeriesPart x = PowerSeries.mk fun (n : ℕ) => x.coeff (HahnSeries.order x + ↑n)
Instances For
@[simp]
theorem
LaurentSeries.powerSeriesPart_coeff
{R : Type u_1}
[Semiring R]
(x : LaurentSeries R)
(n : ℕ)
:
(PowerSeries.coeff R n) (LaurentSeries.powerSeriesPart x) = x.coeff (HahnSeries.order x + ↑n)
@[simp]
@[simp]
theorem
LaurentSeries.powerSeriesPart_eq_zero
{R : Type u_1}
[Semiring R]
(x : LaurentSeries R)
:
LaurentSeries.powerSeriesPart x = 0 ↔ x = 0
@[simp]
theorem
LaurentSeries.single_order_mul_powerSeriesPart
{R : Type u_1}
[Semiring R]
(x : LaurentSeries R)
:
(HahnSeries.single (HahnSeries.order x)) 1 * (HahnSeries.ofPowerSeries ℤ R) (LaurentSeries.powerSeriesPart x) = x
theorem
LaurentSeries.ofPowerSeries_powerSeriesPart
{R : Type u_1}
[Semiring R]
(x : LaurentSeries R)
:
(HahnSeries.ofPowerSeries ℤ R) (LaurentSeries.powerSeriesPart x) = (HahnSeries.single (-HahnSeries.order x)) 1 * x
instance
LaurentSeries.instAlgebraPowerSeriesLaurentSeriesToZeroToCommMonoidWithZeroInstCommSemiringPowerSeriesInstSemiringHahnSeriesToPartialOrderToOrderedAddCommMonoidToZeroToMonoidWithZeroIntToOrderedCancelAddCommMonoidToStrictOrderedSemiringToLinearOrderedSemiringToLinearOrderedCommSemiringLinearOrderedCommRingToSemiring
{R : Type u_1}
[CommSemiring R]
:
Algebra (PowerSeries R) (LaurentSeries R)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
LaurentSeries.coe_algebraMap
{R : Type u_1}
[CommSemiring R]
:
⇑(algebraMap (PowerSeries R) (LaurentSeries R)) = ⇑(HahnSeries.ofPowerSeries ℤ R)
instance
LaurentSeries.of_powerSeries_localization
{R : Type u_1}
[CommRing R]
:
IsLocalization (Submonoid.powers PowerSeries.X) (LaurentSeries R)
The localization map from power series to Laurent series.
Equations
- ⋯ = ⋯
def
LaurentSeries.instMonoidWithZeroHahnSeriesIntToPartialOrderToStrictOrderedRingToLinearOrderedRingLinearOrderedCommRingToZeroToCommMonoidWithZeroToCommGroupWithZeroToSemifield
{K : Type u}
[Field K]
:
Equations
- LaurentSeries.instMonoidWithZeroHahnSeriesIntToPartialOrderToStrictOrderedRingToLinearOrderedRingLinearOrderedCommRingToZeroToCommMonoidWithZeroToCommGroupWithZeroToSemifield = inferInstance
Instances For
instance
LaurentSeries.instIsFractionRingPowerSeriesInstCommRingPowerSeriesToCommRingToEuclideanDomainLaurentSeriesToZeroToCommMonoidWithZeroToCommGroupWithZeroToSemifieldInstCommRingHahnSeriesToPartialOrderToOrderedAddCommMonoidToZeroToCommMonoidWithZeroToCommSemiringIntToOrderedCancelAddCommMonoidToStrictOrderedSemiringToLinearOrderedSemiringToLinearOrderedCommSemiringLinearOrderedCommRingInstAlgebraPowerSeriesLaurentSeriesToZeroToCommMonoidWithZeroInstCommSemiringPowerSeriesInstSemiringHahnSeriesToPartialOrderToOrderedAddCommMonoidToZeroToMonoidWithZeroIntToOrderedCancelAddCommMonoidToStrictOrderedSemiringToLinearOrderedSemiringToLinearOrderedCommSemiringLinearOrderedCommRingToSemiringToCommSemiring
{K : Type u}
[Field K]
:
IsFractionRing (PowerSeries K) (LaurentSeries K)
Equations
- ⋯ = ⋯
theorem
PowerSeries.coe_add
{R : Type u_1}
[Semiring R]
(f : PowerSeries R)
(g : PowerSeries R)
:
(HahnSeries.ofPowerSeries ℤ R) (f + g) = (HahnSeries.ofPowerSeries ℤ R) f + (HahnSeries.ofPowerSeries ℤ R) g
theorem
PowerSeries.coe_sub
{R' : Type u_2}
[Ring R']
(f' : PowerSeries R')
(g' : PowerSeries R')
:
(HahnSeries.ofPowerSeries ℤ R') (f' - g') = (HahnSeries.ofPowerSeries ℤ R') f' - (HahnSeries.ofPowerSeries ℤ R') g'
theorem
PowerSeries.coe_neg
{R' : Type u_2}
[Ring R']
(f' : PowerSeries R')
:
(HahnSeries.ofPowerSeries ℤ R') (-f') = -(HahnSeries.ofPowerSeries ℤ R') f'
theorem
PowerSeries.coe_mul
{R : Type u_1}
[Semiring R]
(f : PowerSeries R)
(g : PowerSeries R)
:
(HahnSeries.ofPowerSeries ℤ R) (f * g) = (HahnSeries.ofPowerSeries ℤ R) f * (HahnSeries.ofPowerSeries ℤ R) g
theorem
PowerSeries.coeff_coe
{R : Type u_1}
[Semiring R]
(f : PowerSeries R)
(i : ℤ)
:
((HahnSeries.ofPowerSeries ℤ R) f).coeff i = if i < 0 then 0 else (PowerSeries.coeff R (Int.natAbs i)) f
theorem
PowerSeries.coe_C
{R : Type u_1}
[Semiring R]
(r : R)
:
(HahnSeries.ofPowerSeries ℤ R) ((PowerSeries.C R) r) = HahnSeries.C r
theorem
PowerSeries.coe_X
{R : Type u_1}
[Semiring R]
:
(HahnSeries.ofPowerSeries ℤ R) PowerSeries.X = (HahnSeries.single 1) 1
@[simp]
theorem
PowerSeries.coe_smul
{R : Type u_1}
[Semiring R]
{S : Type u_3}
[Semiring S]
[Module R S]
(r : R)
(x : PowerSeries S)
:
(HahnSeries.ofPowerSeries ℤ S) (r • x) = r • (HahnSeries.ofPowerSeries ℤ S) x
@[simp]
theorem
PowerSeries.coe_pow
{R : Type u_1}
[Semiring R]
(f : PowerSeries R)
(n : ℕ)
:
(HahnSeries.ofPowerSeries ℤ R) (f ^ n) = (HahnSeries.ofPowerSeries ℤ R) f ^ n