Ordinal exponential #
In this file we define the power function and the logarithm function on ordinals. The two are
related by the lemma Ordinal.opow_le_iff_le_log : b ^ c ≤ x ↔ c ≤ log b x
for nontrivial inputs
b
, c
.
The ordinal exponential, defined by transfinite recursion.
Equations
- One or more equations did not get rendered due to their size.
theorem
Ordinal.opow_def
(a : Ordinal.{u})
(b : Ordinal.{u})
:
a ^ b = if a = 0 then 1 - b
else
Ordinal.limitRecOn b 1 (fun (x IH : Ordinal.{u}) => IH * a) fun (b : Ordinal.{u}) (x : Ordinal.IsLimit b) =>
Ordinal.bsup b
@[simp]
theorem
Ordinal.opow_limit
{a : Ordinal.{u}}
{b : Ordinal.{u}}
(a0 : a ≠ 0)
(h : Ordinal.IsLimit b)
:
a ^ b = Ordinal.bsup b fun (c : Ordinal.{u}) (x : c < b) => a ^ c
theorem
Ordinal.opow_le_of_limit
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(a0 : a ≠ 0)
(h : Ordinal.IsLimit b)
:
theorem
Ordinal.lt_opow_of_limit
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(b0 : b ≠ 0)
(h : Ordinal.IsLimit c)
:
theorem
Ordinal.opow_isNormal
{a : Ordinal.{u_1}}
(h : 1 < a)
:
Ordinal.IsNormal fun (x : Ordinal.{u_1}) => a ^ x
theorem
Ordinal.opow_lt_opow_iff_right
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(a1 : 1 < a)
:
theorem
Ordinal.opow_le_opow_iff_right
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(a1 : 1 < a)
:
theorem
Ordinal.opow_right_inj
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(a1 : 1 < a)
:
theorem
Ordinal.opow_isLimit
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
(a1 : 1 < a)
:
Ordinal.IsLimit b → Ordinal.IsLimit (a ^ b)
theorem
Ordinal.opow_isLimit_left
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
(l : Ordinal.IsLimit a)
(hb : b ≠ 0)
:
Ordinal.IsLimit (a ^ b)
theorem
Ordinal.opow_le_opow_right
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(h₁ : 0 < a)
(h₂ : b ≤ c)
:
theorem
Ordinal.opow_le_opow_left
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
(c : Ordinal.{u_1})
(ab : a ≤ b)
:
theorem
Ordinal.opow_lt_opow_left_of_succ
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(ab : a < b)
:
a ^ Order.succ c < b ^ Order.succ c
theorem
Ordinal.opow_dvd_opow
(a : Ordinal.{u_1})
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(h : b ≤ c)
:
theorem
Ordinal.opow_dvd_opow_iff
{a : Ordinal.{u_1}}
{b : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(a1 : 1 < a)
:
Ordinal logarithm #
The ordinal logarithm is the solution u
to the equation x = b ^ u * v + w
where v < b
and
w < b ^ u
.
Equations
- Ordinal.log b x = if _h : 1 < b then Ordinal.pred (sInf {o : Ordinal.{u_1} | x < b ^ o}) else 0
Instances For
theorem
Ordinal.log_nonempty
{b : Ordinal.{u_1}}
{x : Ordinal.{u_1}}
(h : 1 < b)
:
Set.Nonempty {o : Ordinal.{u_1} | x < b ^ o}
The set in the definition of log
is nonempty.
theorem
Ordinal.log_def
{b : Ordinal.{u_1}}
(h : 1 < b)
(x : Ordinal.{u_1})
:
Ordinal.log b x = Ordinal.pred (sInf {o : Ordinal.{u_1} | x < b ^ o})
theorem
Ordinal.log_of_not_one_lt_left
{b : Ordinal.{u_1}}
(h : ¬1 < b)
(x : Ordinal.{u_1})
:
Ordinal.log b x = 0
theorem
Ordinal.log_of_left_le_one
{b : Ordinal.{u_1}}
(h : b ≤ 1)
(x : Ordinal.{u_1})
:
Ordinal.log b x = 0
theorem
Ordinal.succ_log_def
{b : Ordinal.{u_1}}
{x : Ordinal.{u_1}}
(hb : 1 < b)
(hx : x ≠ 0)
:
Order.succ (Ordinal.log b x) = sInf {o : Ordinal.{u_1} | x < b ^ o}
theorem
Ordinal.lt_opow_succ_log_self
{b : Ordinal.{u_1}}
(hb : 1 < b)
(x : Ordinal.{u_1})
:
x < b ^ Order.succ (Ordinal.log b x)
theorem
Ordinal.opow_log_le_self
(b : Ordinal.{u_1})
{x : Ordinal.{u_1}}
(hx : x ≠ 0)
:
b ^ Ordinal.log b x ≤ x
theorem
Ordinal.opow_le_iff_le_log
{b : Ordinal.{u_1}}
{x : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(hb : 1 < b)
(hx : x ≠ 0)
:
b ^ c ≤ x ↔ c ≤ Ordinal.log b x
opow b
and log b
(almost) form a Galois connection.
theorem
Ordinal.lt_opow_iff_log_lt
{b : Ordinal.{u_1}}
{x : Ordinal.{u_1}}
{c : Ordinal.{u_1}}
(hb : 1 < b)
(hx : x ≠ 0)
:
x < b ^ c ↔ Ordinal.log b x < c
theorem
Ordinal.log_pos
{b : Ordinal.{u_1}}
{o : Ordinal.{u_1}}
(hb : 1 < b)
(ho : o ≠ 0)
(hbo : b ≤ o)
:
0 < Ordinal.log b o
theorem
Ordinal.log_eq_zero
{b : Ordinal.{u_1}}
{o : Ordinal.{u_1}}
(hbo : o < b)
:
Ordinal.log b o = 0
theorem
Ordinal.log_mono_right
(b : Ordinal.{u_1})
{x : Ordinal.{u_1}}
{y : Ordinal.{u_1}}
(xy : x ≤ y)
:
Ordinal.log b x ≤ Ordinal.log b y
theorem
Ordinal.mod_opow_log_lt_self
(b : Ordinal.{u_1})
{o : Ordinal.{u_1}}
(ho : o ≠ 0)
:
o % b ^ Ordinal.log b o < o
theorem
Ordinal.log_mod_opow_log_lt_log_self
{b : Ordinal.{u_1}}
{o : Ordinal.{u_1}}
(hb : 1 < b)
(ho : o ≠ 0)
(hbo : b ≤ o)
:
Ordinal.log b (o % b ^ Ordinal.log b o) < Ordinal.log b o
theorem
Ordinal.opow_mul_add_pos
{b : Ordinal.{u_1}}
{v : Ordinal.{u_1}}
(hb : b ≠ 0)
(u : Ordinal.{u_1})
(hv : v ≠ 0)
(w : Ordinal.{u_1})
:
theorem
Ordinal.opow_mul_add_lt_opow_mul_succ
{b : Ordinal.{u_1}}
{u : Ordinal.{u_1}}
{w : Ordinal.{u_1}}
(v : Ordinal.{u_1})
(hw : w < b ^ u)
:
theorem
Ordinal.opow_mul_add_lt_opow_succ
{b : Ordinal.{u_1}}
{u : Ordinal.{u_1}}
{v : Ordinal.{u_1}}
{w : Ordinal.{u_1}}
(hvb : v < b)
(hw : w < b ^ u)
:
theorem
Ordinal.log_opow_mul_add
{b : Ordinal.{u_1}}
{u : Ordinal.{u_1}}
{v : Ordinal.{u_1}}
{w : Ordinal.{u_1}}
(hb : 1 < b)
(hv : v ≠ 0)
(hvb : v < b)
(hw : w < b ^ u)
:
Ordinal.log b (b ^ u * v + w) = u
theorem
Ordinal.log_opow
{b : Ordinal.{u_1}}
(hb : 1 < b)
(x : Ordinal.{u_1})
:
Ordinal.log b (b ^ x) = x
theorem
Ordinal.div_opow_log_pos
(b : Ordinal.{u_1})
{o : Ordinal.{u_1}}
(ho : o ≠ 0)
:
0 < o / b ^ Ordinal.log b o
theorem
Ordinal.div_opow_log_lt
{b : Ordinal.{u_1}}
(o : Ordinal.{u_1})
(hb : 1 < b)
:
o / b ^ Ordinal.log b o < b
theorem
Ordinal.add_log_le_log_mul
{x : Ordinal.{u_1}}
{y : Ordinal.{u_1}}
(b : Ordinal.{u_1})
(hx : x ≠ 0)
(hy : y ≠ 0)
:
Ordinal.log b x + Ordinal.log b y ≤ Ordinal.log b (x * y)
theorem
Ordinal.sup_opow_nat
{o : Ordinal.{u_1}}
(ho : 0 < o)
:
(Ordinal.sup fun (n : ℕ) => o ^ ↑n) = o ^ Ordinal.omega