Infinite sums in topological groups #
Lemmas on topological sums in groups (as opposed to monoids).
theorem
HasSum.neg
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{a : α}
(h : HasSum f a)
:
theorem
Summable.neg
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
(hf : Summable f)
:
theorem
Summable.of_neg
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
(hf : Summable fun (b : β) => -f b)
:
Summable f
theorem
summable_neg_iff
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
:
theorem
HasSum.sub
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{g : β → α}
{a₁ : α}
{a₂ : α}
(hf : HasSum f a₁)
(hg : HasSum g a₂)
:
theorem
Summable.sub
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{g : β → α}
(hf : Summable f)
(hg : Summable g)
:
theorem
Summable.trans_sub
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{g : β → α}
(hg : Summable g)
(hfg : Summable fun (b : β) => f b - g b)
:
Summable f
theorem
summable_iff_of_summable_sub
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{g : β → α}
(hfg : Summable fun (b : β) => f b - g b)
:
theorem
HasSum.update
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{a₁ : α}
(hf : HasSum f a₁)
(b : β)
[DecidableEq β]
(a : α)
:
HasSum (Function.update f b a) (a - f b + a₁)
theorem
Summable.update
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
(hf : Summable f)
(b : β)
[DecidableEq β]
(a : α)
:
Summable (Function.update f b a)
theorem
HasSum.hasSum_compl_iff
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{a₁ : α}
{a₂ : α}
{s : Set β}
(hf : HasSum (f ∘ Subtype.val) a₁)
:
theorem
HasSum.hasSum_iff_compl
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{a₁ : α}
{a₂ : α}
{s : Set β}
(hf : HasSum (f ∘ Subtype.val) a₁)
:
theorem
Summable.summable_compl_iff
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{s : Set β}
(hf : Summable (f ∘ Subtype.val))
:
theorem
Finset.hasSum_compl_iff
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{a : α}
(s : Finset β)
:
HasSum (fun (x : { x : β // x ∉ s }) => f ↑x) a ↔ HasSum f (a + Finset.sum s fun (i : β) => f i)
theorem
Finset.hasSum_iff_compl
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{a : α}
(s : Finset β)
:
HasSum f a ↔ HasSum (fun (x : { x : β // x ∉ s }) => f ↑x) (a - Finset.sum s fun (i : β) => f i)
theorem
Finset.summable_compl_iff
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
(s : Finset β)
:
theorem
Set.Finite.summable_compl_iff
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{s : Set β}
(hs : Set.Finite s)
:
theorem
hasSum_ite_sub_hasSum
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{a : α}
[DecidableEq β]
(hf : HasSum f a)
(b : β)
:
theorem
tsum_neg
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
[T2Space α]
:
theorem
tsum_sub
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
{g : β → α}
[T2Space α]
(hf : Summable f)
(hg : Summable g)
:
theorem
sum_add_tsum_compl
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
[T2Space α]
{s : Finset β}
(hf : Summable f)
:
(Finset.sum s fun (x : β) => f x) + ∑' (x : ↑(↑s)ᶜ), f ↑x = ∑' (x : β), f x
theorem
tsum_eq_add_tsum_ite
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[TopologicalSpace α]
[TopologicalAddGroup α]
{f : β → α}
[T2Space α]
[DecidableEq β]
(hf : Summable f)
(b : β)
:
Let f : β → α
be a sequence with summable series and let b ∈ β
be an index.
Lemma tsum_eq_add_tsum_ite
writes Σ f n
as the sum of f b
plus the series of the
remaining terms.
theorem
summable_iff_cauchySeq_finset
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[CompleteSpace α]
{f : β → α}
:
Summable f ↔ CauchySeq fun (s : Finset β) => Finset.sum s fun (b : β) => f b
The Cauchy criterion for infinite sums, also known as the Cauchy convergence test
theorem
cauchySeq_finset_iff_vanishing
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
:
(CauchySeq fun (s : Finset β) => Finset.sum s fun (b : β) => f b) ↔ ∀ e ∈ nhds 0, ∃ (s : Finset β), ∀ (t : Finset β), Disjoint t s → (Finset.sum t fun (b : β) => f b) ∈ e
theorem
cauchySeq_finset_iff_tsum_vanishing
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
:
theorem
summable_iff_vanishing
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
[CompleteSpace α]
:
theorem
summable_iff_tsum_vanishing
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
[CompleteSpace α]
:
theorem
Summable.summable_of_eq_zero_or_self
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
{g : β → α}
[CompleteSpace α]
(hf : Summable f)
(h : ∀ (b : β), g b = 0 ∨ g b = f b)
:
Summable g
theorem
Summable.indicator
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
[CompleteSpace α]
(hf : Summable f)
(s : Set β)
:
Summable (Set.indicator s f)
theorem
Summable.comp_injective
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
[CompleteSpace α]
{i : γ → β}
(hf : Summable f)
(hi : Function.Injective i)
:
theorem
Summable.subtype
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
[CompleteSpace α]
(hf : Summable f)
(s : Set β)
:
theorem
summable_subtype_and_compl
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
{f : β → α}
[CompleteSpace α]
{s : Set β}
:
theorem
tsum_subtype_add_tsum_subtype_compl
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
[CompleteSpace α]
[T2Space α]
{f : β → α}
(hf : Summable f)
(s : Set β)
:
theorem
sum_add_tsum_subtype_compl
{α : Type u_1}
{β : Type u_2}
[AddCommGroup α]
[UniformSpace α]
[UniformAddGroup α]
[CompleteSpace α]
[T2Space α]
{f : β → α}
(hf : Summable f)
(s : Finset β)
:
(Finset.sum s fun (x : β) => f x) + ∑' (x : { x : β // x ∉ s }), f ↑x = ∑' (x : β), f x
theorem
Summable.vanishing
{α : Type u_1}
{G : Type u_5}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
{f : α → G}
(hf : Summable f)
⦃e : Set G⦄
(he : e ∈ nhds 0)
:
∃ (s : Finset α), ∀ (t : Finset α), Disjoint t s → (Finset.sum t fun (k : α) => f k) ∈ e
theorem
Summable.tsum_vanishing
{α : Type u_1}
{G : Type u_5}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
{f : α → G}
(hf : Summable f)
⦃e : Set G⦄
(he : e ∈ nhds 0)
:
theorem
tendsto_tsum_compl_atTop_zero
{α : Type u_1}
{G : Type u_5}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
(f : α → G)
:
Filter.Tendsto (fun (s : Finset α) => ∑' (a : { x : α // x ∉ s }), f ↑a) Filter.atTop (nhds 0)
The sum over the complement of a finset tends to 0
when the finset grows to cover the whole
space. This does not need a summability assumption, as otherwise all sums are zero.
theorem
Summable.tendsto_cofinite_zero
{α : Type u_1}
{G : Type u_5}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
{f : α → G}
(hf : Summable f)
:
Filter.Tendsto f Filter.cofinite (nhds 0)
Series divergence test: if f
is a convergent series, then f x
tends to zero along
cofinite
.
theorem
Summable.countable_support
{α : Type u_1}
{G : Type u_5}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
{f : α → G}
[FirstCountableTopology G]
[T1Space G]
(hf : Summable f)
:
theorem
summable_const_iff
{β : Type u_2}
{G : Type u_5}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
[Infinite β]
[T2Space G]
(a : G)
:
@[simp]
theorem
tsum_const
{β : Type u_2}
{G : Type u_5}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
[T2Space G]
(a : G)
: