A HeapNode
is one of the internal nodes of the binomial heap.
It is always a perfect binary tree, with the depth of the tree stored in the Heap
.
However the interpretation of the two pointers is different: we view the child
as going to the first child of this node, and sibling
goes to the next sibling
of this tree. So it actually encodes a forest where each node has children
node.child
, node.child.sibling
, node.child.sibling.sibling
, etc.
Each edge in this forest denotes a le a b
relation that has been checked, so
the root is smaller than everything else under it.
- nil: {α : Type u} → Std.BinomialHeap.Imp.HeapNode α
An empty forest, which has depth
0
. - node: {α : Type u} → α → Std.BinomialHeap.Imp.HeapNode α → Std.BinomialHeap.Imp.HeapNode α → Std.BinomialHeap.Imp.HeapNode α
A forest of rank
r + 1
consists of a roota
, a forestchild
of rankr
elements greater thana
, and another forestsibling
of rankr
.
Instances For
Equations
- Std.BinomialHeap.Imp.instReprHeapNode = { reprPrec := Std.BinomialHeap.Imp.reprHeapNode✝ }
The "real size" of the node, counting up how many values of type α
are stored.
This is O(n)
and is intended mainly for specification purposes.
For a well formed HeapNode
the size is always 2^n - 1
where n
is the depth.
Equations
- Std.BinomialHeap.Imp.HeapNode.realSize Std.BinomialHeap.Imp.HeapNode.nil = 0
- Std.BinomialHeap.Imp.HeapNode.realSize (Std.BinomialHeap.Imp.HeapNode.node a a_1 a_2) = Std.BinomialHeap.Imp.HeapNode.realSize a_1 + 1 + Std.BinomialHeap.Imp.HeapNode.realSize a_2
Instances For
A node containing a single element a
.
Equations
- Std.BinomialHeap.Imp.HeapNode.singleton a = Std.BinomialHeap.Imp.HeapNode.node a Std.BinomialHeap.Imp.HeapNode.nil Std.BinomialHeap.Imp.HeapNode.nil
Instances For
O(log n)
. The rank, or the number of trees in the forest.
It is also the depth of the forest.
Equations
- Std.BinomialHeap.Imp.HeapNode.rank Std.BinomialHeap.Imp.HeapNode.nil = 0
- Std.BinomialHeap.Imp.HeapNode.rank (Std.BinomialHeap.Imp.HeapNode.node a a_1 a_2) = Std.BinomialHeap.Imp.HeapNode.rank a_2 + 1
Instances For
A Heap
is the top level structure in a binomial heap.
It consists of a forest of HeapNode
s with strictly increasing ranks.
- nil: {α : Type u} → Std.BinomialHeap.Imp.Heap α
An empty heap.
- cons: {α : Type u} → Nat → α → Std.BinomialHeap.Imp.HeapNode α → Std.BinomialHeap.Imp.Heap α → Std.BinomialHeap.Imp.Heap α
Instances For
Equations
- Std.BinomialHeap.Imp.instReprHeap = { reprPrec := Std.BinomialHeap.Imp.reprHeap✝ }
O(n)
. The "real size" of the heap, counting up how many values of type α
are stored.
This is intended mainly for specification purposes.
Prefer Heap.size
, which is the same for well formed heaps.
Equations
- Std.BinomialHeap.Imp.Heap.realSize Std.BinomialHeap.Imp.Heap.nil = 0
- Std.BinomialHeap.Imp.Heap.realSize (Std.BinomialHeap.Imp.Heap.cons a a_1 a_2 a_3) = Std.BinomialHeap.Imp.HeapNode.realSize a_2 + 1 + Std.BinomialHeap.Imp.Heap.realSize a_3
Instances For
O(log n)
. The number of elements in the heap.
Equations
- Std.BinomialHeap.Imp.Heap.size Std.BinomialHeap.Imp.Heap.nil = 0
- Std.BinomialHeap.Imp.Heap.size (Std.BinomialHeap.Imp.Heap.cons a a_1 a_2 a_3) = 1 <<< a + Std.BinomialHeap.Imp.Heap.size a_3
Instances For
O(1)
. Is the heap empty?
Equations
- Std.BinomialHeap.Imp.Heap.isEmpty x = match x with | Std.BinomialHeap.Imp.Heap.nil => true | x => false
Instances For
O(1)
. The heap containing a single value a
.
Equations
- Std.BinomialHeap.Imp.Heap.singleton a = Std.BinomialHeap.Imp.Heap.cons 0 a Std.BinomialHeap.Imp.HeapNode.nil Std.BinomialHeap.Imp.Heap.nil
Instances For
O(1)
. Auxiliary for Heap.merge
: Is the minimum rank in Heap
strictly larger than n
?
Equations
- Std.BinomialHeap.Imp.Heap.rankGT x✝ x = match x✝, x with | Std.BinomialHeap.Imp.Heap.nil, x => True | Std.BinomialHeap.Imp.Heap.cons r val node next, n => n < r
Instances For
Equations
- One or more equations did not get rendered due to their size.
O(log n)
. The number of trees in the forest.
Equations
- Std.BinomialHeap.Imp.Heap.length Std.BinomialHeap.Imp.Heap.nil = 0
- Std.BinomialHeap.Imp.Heap.length (Std.BinomialHeap.Imp.Heap.cons a a_1 a_2 a_3) = Std.BinomialHeap.Imp.Heap.length a_3 + 1
Instances For
O(1)
. Auxiliary for Heap.merge
: combines two heap nodes of the same rank
into one with the next larger rank.
Equations
- Std.BinomialHeap.Imp.combine le a₁ a₂ n₁ n₂ = if le a₁ a₂ = true then (a₁, Std.BinomialHeap.Imp.HeapNode.node a₂ n₂ n₁) else (a₂, Std.BinomialHeap.Imp.HeapNode.node a₁ n₁ n₂)
Instances For
Merge two forests of binomial trees. The forests are assumed to be ordered
by rank and merge
maintains this invariant.
Equations
- One or more equations did not get rendered due to their size.
- Std.BinomialHeap.Imp.Heap.merge le Std.BinomialHeap.Imp.Heap.nil x = x
- Std.BinomialHeap.Imp.Heap.merge le x Std.BinomialHeap.Imp.Heap.nil = x
Instances For
O(log n)
. Convert a HeapNode
to a Heap
by reversing the order of the nodes
along the sibling
spine.
Equations
- Std.BinomialHeap.Imp.HeapNode.toHeap s = Std.BinomialHeap.Imp.HeapNode.toHeap.go s (Std.BinomialHeap.Imp.HeapNode.rank s) Std.BinomialHeap.Imp.Heap.nil
Instances For
Computes s.toHeap ++ res
tail-recursively, assuming n = s.rank
.
Equations
- Std.BinomialHeap.Imp.HeapNode.toHeap.go Std.BinomialHeap.Imp.HeapNode.nil x✝ x = x
- Std.BinomialHeap.Imp.HeapNode.toHeap.go (Std.BinomialHeap.Imp.HeapNode.node a c s) x✝ x = Std.BinomialHeap.Imp.HeapNode.toHeap.go s (x✝ - 1) (Std.BinomialHeap.Imp.Heap.cons (x✝ - 1) a c x)
Instances For
O(log n)
. Get the smallest element in the heap, including the passed in value a
.
Equations
- Std.BinomialHeap.Imp.Heap.headD le a Std.BinomialHeap.Imp.Heap.nil = a
- Std.BinomialHeap.Imp.Heap.headD le a (Std.BinomialHeap.Imp.Heap.cons a_1 a_2 a_3 a_4) = Std.BinomialHeap.Imp.Heap.headD le (if le a a_2 = true then a else a_2) a_4
Instances For
O(log n)
. Get the smallest element in the heap, if it has an element.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The return type of FindMin
, which encodes various quantities needed to
reconstruct the tree in deleteMin
.
- before : Std.BinomialHeap.Imp.Heap α → Std.BinomialHeap.Imp.Heap α
The list of elements prior to the minimum element, encoded as a "difference list".
- val : α
The minimum element.
- node : Std.BinomialHeap.Imp.HeapNode α
The children of the minimum element.
- next : Std.BinomialHeap.Imp.Heap α
The forest after the minimum element.
Instances For
O(log n)
. Find the minimum element, and return a data structure FindMin
with information
needed to reconstruct the rest of the binomial heap.
Equations
- One or more equations did not get rendered due to their size.
- Std.BinomialHeap.Imp.Heap.findMin le k Std.BinomialHeap.Imp.Heap.nil x = x
Instances For
O(log n)
. Find and remove the the minimum element from the binomial heap.
Equations
- One or more equations did not get rendered due to their size.
Instances For
O(log n)
. Get the tail of the binomial heap after removing the minimum element.
Equations
- Std.BinomialHeap.Imp.Heap.tail? le h = Option.map (fun (x : α × Std.BinomialHeap.Imp.Heap α) => x.snd) (Std.BinomialHeap.Imp.Heap.deleteMin le h)
Instances For
O(log n)
. Remove the minimum element of the heap.
Equations
- Std.BinomialHeap.Imp.Heap.tail le h = Option.getD (Std.BinomialHeap.Imp.Heap.tail? le h) Std.BinomialHeap.Imp.Heap.nil
Instances For
O(n log n)
. Monadic fold over the elements of a heap in increasing order,
by repeatedly pulling the minimum element out of the heap.
Equations
- One or more equations did not get rendered due to their size.
Instances For
O(n log n)
. Fold over the elements of a heap in increasing order,
by repeatedly pulling the minimum element out of the heap.
Equations
- Std.BinomialHeap.Imp.Heap.fold le s init f = Id.run (Std.BinomialHeap.Imp.Heap.foldM le s init f)
Instances For
O(n log n)
. Convert the heap to an array in increasing order.
Equations
- Std.BinomialHeap.Imp.Heap.toArray le s = Std.BinomialHeap.Imp.Heap.fold le s #[] Array.push
Instances For
O(n log n)
. Convert the heap to a list in increasing order.
Equations
Instances For
O(n)
. Fold a monadic function over the tree structure to accumulate a value.
Equations
- One or more equations did not get rendered due to their size.
- Std.BinomialHeap.Imp.HeapNode.foldTreeM nil join Std.BinomialHeap.Imp.HeapNode.nil = pure nil
Instances For
O(n)
. Fold a monadic function over the tree structure to accumulate a value.
Equations
- One or more equations did not get rendered due to their size.
- Std.BinomialHeap.Imp.Heap.foldTreeM nil join Std.BinomialHeap.Imp.Heap.nil = pure nil
Instances For
O(n)
. Fold a function over the tree structure to accumulate a value.
Equations
- Std.BinomialHeap.Imp.Heap.foldTree nil join s = Id.run (Std.BinomialHeap.Imp.Heap.foldTreeM nil join s)
Instances For
O(n)
. Convert the heap to a list in arbitrary order.
Equations
- Std.BinomialHeap.Imp.Heap.toListUnordered s = Std.BinomialHeap.Imp.Heap.foldTree id (fun (a : α) (c s : List α → List α) (l : List α) => a :: c (s l)) s []
Instances For
O(n)
. Convert the heap to an array in arbitrary order.
Equations
- Std.BinomialHeap.Imp.Heap.toArrayUnordered s = Std.BinomialHeap.Imp.Heap.foldTree id (fun (a : α) (c s : Array α → Array α) (r : Array α) => s (c (Array.push r a))) s #[]
Instances For
The well formedness predicate for a heap node. It asserts that:
- If
a
is added at the top to make the forest into a tree, the resulting tree is ale
-min-heap (ifle
is well-behaved) - When interpreting
child
andsibling
as left and right children of a binary tree, it is a perfect binary tree with depthr
Equations
- One or more equations did not get rendered due to their size.
- Std.BinomialHeap.Imp.HeapNode.WF le a Std.BinomialHeap.Imp.HeapNode.nil x = (x = 0)
Instances For
The well formedness predicate for a binomial heap. It asserts that:
- It consists of a list of well formed trees with the specified ranks
- The ranks are in strictly increasing order, and all are at least
n
Equations
- Std.BinomialHeap.Imp.Heap.WF le n Std.BinomialHeap.Imp.Heap.nil = True
- Std.BinomialHeap.Imp.Heap.WF le n (Std.BinomialHeap.Imp.Heap.cons a a_1 a_2 a_3) = (n ≤ a ∧ Std.BinomialHeap.Imp.HeapNode.WF le a_1 a_2 a ∧ Std.BinomialHeap.Imp.Heap.WF le (a + 1) a_3)
Instances For
The well formedness predicate for a FindMin
value.
This is not actually a predicate, as it contains an additional data value
rank
corresponding to the rank of the returned node, which is omitted from findMin
.
- rank : Nat
The rank of the minimum element
- before : ∀ {s : Std.BinomialHeap.Imp.Heap α}, Std.BinomialHeap.Imp.Heap.WF le self.rank s → Std.BinomialHeap.Imp.Heap.WF le 0 (res.before s)
- node : Std.BinomialHeap.Imp.HeapNode.WF le res.val res.node self.rank
- next : Std.BinomialHeap.Imp.Heap.WF le (self.rank + 1) res.next
Instances For
The conditions under which findMin
is well-formed.
Equations
- One or more equations did not get rendered due to their size.
- Std.BinomialHeap.Imp.Heap.WF.findMin h_2 hr hk = hr
Instances For
A binomial heap is a data structure which supports the following primary operations:
insert : α → BinomialHeap α → BinomialHeap α
: add an element to the heapdeleteMin : BinomialHeap α → Option (α × BinomialHeap α)
: remove the minimum element from the heapmerge : BinomialHeap α → BinomialHeap α → BinomialHeap α
: combine two heaps
The first two operations are known as a "priority queue", so this could be called
a "mergeable priority queue". The standard choice for a priority queue is a binary heap,
which supports insert
and deleteMin
in O(log n)
, but merge
is O(n)
.
With a BinomialHeap
, all three operations are O(log n)
.
Equations
- Std.BinomialHeap α le = { h : Std.BinomialHeap.Imp.Heap α // Std.BinomialHeap.Imp.Heap.WF le 0 h }
Instances For
O(1)
. Make a new empty binomial heap.
Equations
- Std.mkBinomialHeap α le = { val := Std.BinomialHeap.Imp.Heap.nil, property := ⋯ }
Instances For
O(1)
. Make a new empty binomial heap.
Equations
- Std.BinomialHeap.empty = Std.mkBinomialHeap α le
Instances For
Equations
- Std.BinomialHeap.instEmptyCollectionBinomialHeap = { emptyCollection := Std.BinomialHeap.empty }
Equations
- Std.BinomialHeap.instInhabitedBinomialHeap = { default := Std.BinomialHeap.empty }
O(1)
. Is the heap empty?
Equations
Instances For
O(log n)
. The number of elements in the heap.
Equations
Instances For
O(1)
. Make a new heap containing a
.
Equations
- Std.BinomialHeap.singleton a = { val := Std.BinomialHeap.Imp.Heap.singleton a, property := ⋯ }
Instances For
O(log n)
. Merge the contents of two heaps.
Equations
- Std.BinomialHeap.merge x✝ x = match x✝, x with | { val := b₁, property := h₁ }, { val := b₂, property := h₂ } => { val := Std.BinomialHeap.Imp.Heap.merge le b₁ b₂, property := ⋯ }
Instances For
O(log n)
. Add element a
to the given heap h
.
Equations
Instances For
O(n log n)
. Construct a heap from a list by inserting all the elements.
Equations
- Std.BinomialHeap.ofList le as = List.foldl (flip Std.BinomialHeap.insert) Std.BinomialHeap.empty as
Instances For
O(n log n)
. Construct a heap from a list by inserting all the elements.
Equations
- Std.BinomialHeap.ofArray le as = Array.foldl (flip Std.BinomialHeap.insert) Std.BinomialHeap.empty as 0
Instances For
O(log n)
. Remove and return the minimum element from the heap.
Equations
- Std.BinomialHeap.deleteMin b = match eq : Std.BinomialHeap.Imp.Heap.deleteMin le b.val with | none => none | some (a, tl) => some (a, { val := tl, property := ⋯ })
Instances For
Equations
- Std.BinomialHeap.instStreamBinomialHeap = { next? := Std.BinomialHeap.deleteMin }
O(n log n)
. Implementation of for x in (b : BinomialHeap α le) ...
notation,
which iterates over the elements in the heap in increasing order.
Equations
- Std.BinomialHeap.forIn b x f = ForInStep.run <$> Std.BinomialHeap.Imp.Heap.foldM le b.val (ForInStep.yield x) fun (x : ForInStep β) (a : α) => ForInStep.bind x (f a)
Instances For
O(log n)
. Returns the smallest element in the heap, or none
if the heap is empty.
Equations
Instances For
O(log n)
. Returns the smallest element in the heap, or panics if the heap is empty.
Equations
Instances For
O(log n)
. Returns the smallest element in the heap, or default
if the heap is empty.
Equations
- Std.BinomialHeap.headI b = Option.getD (Std.BinomialHeap.head? b) default
Instances For
O(log n)
. Removes the smallest element from the heap, or none
if the heap is empty.
Equations
- Std.BinomialHeap.tail? b = match eq : Std.BinomialHeap.Imp.Heap.tail? le b.val with | none => none | some tl => some { val := tl, property := ⋯ }
Instances For
O(log n)
. Removes the smallest element from the heap, if possible.
Equations
- Std.BinomialHeap.tail b = { val := Std.BinomialHeap.Imp.Heap.tail le b.val, property := ⋯ }
Instances For
O(n log n)
. Monadic fold over the elements of a heap in increasing order,
by repeatedly pulling the minimum element out of the heap.
Equations
- Std.BinomialHeap.foldM b init f = Std.BinomialHeap.Imp.Heap.foldM le b.val init f
Instances For
O(n log n)
. Fold over the elements of a heap in increasing order,
by repeatedly pulling the minimum element out of the heap.
Equations
- Std.BinomialHeap.fold b init f = Std.BinomialHeap.Imp.Heap.fold le b.val init f
Instances For
O(n log n)
. Convert the heap to a list in increasing order.
Equations
Instances For
O(n log n)
. Convert the heap to an array in increasing order.
Equations
Instances For
O(n)
. Convert the heap to a list in arbitrary order.
Equations
Instances For
O(n)
. Convert the heap to an array in arbitrary order.