Documentation

Std.Data.Int.Gcd

Results about Int.gcd. #

theorem Int.gcd_dvd_left {a : Int} {b : Int} :
(Int.gcd a b) a
theorem Int.gcd_dvd_right {a : Int} {b : Int} :
(Int.gcd a b) b
@[simp]
theorem Int.one_gcd {a : Int} :
Int.gcd 1 a = 1
@[simp]
theorem Int.gcd_one {a : Int} :
Int.gcd a 1 = 1
@[simp]
theorem Int.neg_gcd {a : Int} {b : Int} :
Int.gcd (-a) b = Int.gcd a b
@[simp]
theorem Int.gcd_neg {a : Int} {b : Int} :
Int.gcd a (-b) = Int.gcd a b
def Int.lcm (m : Int) (n : Int) :

Computes the least common multiple of two integers, as a Nat.

Equations
Instances For
    theorem Int.lcm_ne_zero {m : Int} {n : Int} (hm : m 0) (hn : n 0) :
    Int.lcm m n 0
    theorem Int.dvd_lcm_left {a : Int} {b : Int} :
    a (Int.lcm a b)
    theorem Int.dvd_lcm_right {a : Int} {b : Int} :
    b (Int.lcm a b)
    @[simp]
    theorem Int.lcm_self {a : Int} :