Documentation
banach_tarski
.
Equidecomposable
.
Rotations
Search
Google site search
return to top
source
Imports
Init
banach_tarski.Definitions
Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
Imported by
sq_2
pi_sqrt_two
sin_sqrt_2_neq_0
rot_sq_2
rot_sq_2_det_ne_zero
gl_sq_2
coe_gl_sq_2_eq_rot_sq_2
rot_sq_2_inv
det_sq_2_inv_ne_zero
gl_sq_2_inv
coe_gl_sq_2_inv_eq_rot_sq_2_inv
source
noncomputable def
sq_2
:
ℝ
Equations
sq_2
=
Real.sqrt
2
Instances For
source
theorem
pi_sqrt_two
(h :
∃ (x :
ℚ
),
Real.pi
=
↑
x
*
sq_2
)
:
false
=
true
source
theorem
sin_sqrt_2_neq_0
:
Real.sin
sq_2
=
0
→
false
=
true
source
noncomputable def
rot_sq_2
:
Matrix
(
Fin
3
)
(
Fin
3
)
ℝ
Equations
rot_sq_2
=
Matrix.of
![
![
Real.cos
sq_2
,
-
Real.sin
sq_2
,
0
]
,
![
Real.sin
sq_2
,
Real.cos
sq_2
,
0
]
,
![
0
,
0
,
1
]
]
Instances For
source
theorem
rot_sq_2_det_ne_zero
:
Matrix.det
rot_sq_2
≠
0
source
noncomputable def
gl_sq_2
:
GL
(
Fin
3
)
ℝ
Equations
gl_sq_2
=
Matrix.GeneralLinearGroup.mkOfDetNeZero
rot_sq_2
rot_sq_2_det_ne_zero
Instances For
source
theorem
coe_gl_sq_2_eq_rot_sq_2
:
↑
gl_sq_2
=
rot_sq_2
source
noncomputable def
rot_sq_2_inv
:
Matrix
(
Fin
3
)
(
Fin
3
)
ℝ
Equations
rot_sq_2_inv
=
Matrix.of
![
![
Real.cos
sq_2
,
Real.sin
sq_2
,
0
]
,
![
-
Real.sin
sq_2
,
Real.cos
sq_2
,
0
]
,
![
0
,
0
,
1
]
]
Instances For
source
theorem
det_sq_2_inv_ne_zero
:
Matrix.det
rot_sq_2_inv
≠
0
source
noncomputable def
gl_sq_2_inv
:
GL
(
Fin
3
)
ℝ
Equations
gl_sq_2_inv
=
Matrix.GeneralLinearGroup.mkOfDetNeZero
rot_sq_2_inv
det_sq_2_inv_ne_zero
Instances For
source
theorem
coe_gl_sq_2_inv_eq_rot_sq_2_inv
:
↑
gl_sq_2_inv
=
rot_sq_2_inv