Documentation

banach_tarski.Lemma_3_1

noncomputable def a_b_c_vec (a : ) (b : ) (c : ) (n : ) :
Equations
Instances For
    theorem rotate_mul (p1 : GL (Fin 3) ) (p2 : GL (Fin 3) ) (i : r_3) :
    rotate (p1 * p2) i = rotate p2 (rotate p1 i)
    theorem rotate_preserve_gl_a (n1 : ) (a1 : ) (b1 : ) (c1 : ) (i : r_3) (h : i = a_b_c_vec a1 b1 c1 n1) :
    rotate gl_a i = a_b_c_vec (3 * a1) (b1 + 4 * c1) (-2 * b1 + c1) (n1 + 1)
    theorem rotate_preserve_gl_a' (n1 : ) (a1 : ) (b1 : ) (c1 : ) (i : r_3) (h : i = a_b_c_vec a1 b1 c1 n1) :
    rotate gl_a' i = a_b_c_vec (3 * a1) (b1 - 4 * c1) (2 * b1 + c1) (n1 + 1)
    theorem rotate_preserve_gl_b (n1 : ) (a1 : ) (b1 : ) (c1 : ) (i : r_3) (h : i = a_b_c_vec a1 b1 c1 n1) :
    rotate gl_b i = a_b_c_vec (a1 + 2 * b1) (-4 * a1 + b1) (3 * c1) (n1 + 1)
    theorem rotate_preserve_gl_b' (n1 : ) (a1 : ) (b1 : ) (c1 : ) (i : r_3) (h : i = a_b_c_vec a1 b1 c1 n1) :
    rotate gl_b' i = a_b_c_vec (a1 - 2 * b1) (4 * a1 + b1) (3 * c1) (n1 + 1)
    theorem lemma_3_1 {n : } (p : List (erzeuger_t × Bool)) (h : List.length p = n) :
    ∃ (a : ) (b : ) (c : ), rotate (list_to_matrix p) zero_one_zero = a_b_c_vec a b c n