Documentation
LeanBanachTarski
.
Definitions
Search
return to top
source
Imports
Init
Mathlib.Analysis.InnerProductSpace.EuclideanDist
Mathlib.Data.Matrix.Basic
Mathlib.Data.Matrix.Notation
Mathlib.Data.Real.Basic
Mathlib.Data.Real.Sqrt
Mathlib.GroupTheory.FreeGroup.Basic
Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
Imported by
matrix_a
matrix_a'
matrix_b
matrix_b'
matrix_one
matrix_a_det_neq_zero
matrix_a'_det_neq_zero
matrix_b_det_neq_zero
matrix_b'_det_neq_zero
matrix_one_det_neq_zero
gl_a
gl_a'
gl_b
gl_b'
gl_one
generator
G
r_3
r_2
zero_one_zero
rotate
rotate_set
rotate_n_times
translate
unitBall
origin
unitBall_without_origin
fixpoint
D
RotationAxis
source
def
matrix_a
:
Matrix
(
Fin
3
)
(
Fin
3
)
ℝ
Equations
matrix_a
=
!![
1
,
0
,
0
;
0
,
1
/
3
,
-
2
/
3
*
√
2
;
0
,
2
/
3
*
√
2
,
1
/
3
]
Instances For
source
def
matrix_a'
:
Matrix
(
Fin
3
)
(
Fin
3
)
ℝ
Equations
matrix_a'
=
!![
1
,
0
,
0
;
0
,
1
/
3
,
2
/
3
*
√
2
;
0
,
-
2
/
3
*
√
2
,
1
/
3
]
Instances For
source
def
matrix_b
:
Matrix
(
Fin
3
)
(
Fin
3
)
ℝ
Equations
matrix_b
=
!![
1
/
3
,
-
2
/
3
*
√
2
,
0
;
2
/
3
*
√
2
,
1
/
3
,
0
;
0
,
0
,
1
]
Instances For
source
def
matrix_b'
:
Matrix
(
Fin
3
)
(
Fin
3
)
ℝ
Equations
matrix_b'
=
!![
1
/
3
,
2
/
3
*
√
2
,
0
;
-
2
/
3
*
√
2
,
1
/
3
,
0
;
0
,
0
,
1
]
Instances For
source
def
matrix_one
:
Matrix
(
Fin
3
)
(
Fin
3
)
ℝ
Equations
matrix_one
=
1
Instances For
source
theorem
matrix_a_det_neq_zero
:
matrix_a
.
det
≠
0
source
theorem
matrix_a'_det_neq_zero
:
matrix_a'
.
det
≠
0
source
theorem
matrix_b_det_neq_zero
:
matrix_b
.
det
≠
0
source
theorem
matrix_b'_det_neq_zero
:
matrix_b'
.
det
≠
0
source
theorem
matrix_one_det_neq_zero
:
matrix_one
.
det
≠
0
source
def
gl_a
:
GL
(
Fin
3
)
ℝ
Equations
gl_a
=
Matrix.GeneralLinearGroup.mkOfDetNeZero
matrix_a
matrix_a_det_neq_zero
Instances For
source
def
gl_a'
:
GL
(
Fin
3
)
ℝ
Equations
gl_a'
=
Matrix.GeneralLinearGroup.mkOfDetNeZero
matrix_a'
matrix_a'_det_neq_zero
Instances For
source
def
gl_b
:
GL
(
Fin
3
)
ℝ
Equations
gl_b
=
Matrix.GeneralLinearGroup.mkOfDetNeZero
matrix_b
matrix_b_det_neq_zero
Instances For
source
def
gl_b'
:
GL
(
Fin
3
)
ℝ
Equations
gl_b'
=
Matrix.GeneralLinearGroup.mkOfDetNeZero
matrix_b'
matrix_b'_det_neq_zero
Instances For
source
def
gl_one
:
GL
(
Fin
3
)
ℝ
Equations
gl_one
=
Matrix.GeneralLinearGroup.mkOfDetNeZero
matrix_one
matrix_one_det_neq_zero
Instances For
source
def
generator
:
Set
(
GL
(
Fin
3
)
ℝ
)
Equations
generator
=
{
gl_a
,
gl_b
}
Instances For
source
def
G
:
Subgroup
(
GL
(
Fin
3
)
ℝ
)
Equations
G
=
Subgroup.closure
generator
Instances For
source
@[reducible, inline]
abbrev
r_3
:
Type
Equations
r_3
=
(
Fin
3
→
ℝ
)
Instances For
source
@[reducible, inline]
abbrev
r_2
:
Type
Equations
r_2
=
(
Fin
2
→
ℝ
)
Instances For
source
def
zero_one_zero
:
r_3
Equations
zero_one_zero
=
![
0
,
1
,
0
]
Instances For
source
def
rotate
(
p
:
GL
(
Fin
3
)
ℝ
)
(
vec
:
r_3
)
:
r_3
Equations
rotate
p
vec
=
Matrix.vecMul
vec
↑
p
Instances For
source
def
rotate_set
(
x
:
Set
r_3
)
(
p
:
GL
(
Fin
3
)
ℝ
)
:
Set
r_3
Equations
rotate_set
x
p
=
{
w
:
r_3
|
∃
v
∈
x
,
rotate
p
v
=
w
}
Instances For
source
def
rotate_n_times
(
n
:
ℕ
)
(
p
:
GL
(
Fin
3
)
ℝ
)
(
vec
:
r_3
)
:
r_3
Equations
rotate_n_times
0
p
vec
=
vec
rotate_n_times
m
.
succ
p
vec
=
rotate_n_times
m
p
(
rotate
p
vec
)
Instances For
source
def
translate
(
p
vec
:
r_3
)
:
r_3
Equations
translate
p
vec
=
p
+
vec
Instances For
source
def
unitBall
:
Set
(
Fin
3
→
ℝ
)
Equations
unitBall
=
Euclidean.closedBall
![
0
,
0
,
0
]
1
Instances For
source
def
origin
:
r_3
Equations
origin
=
![
0
,
0
,
0
]
Instances For
source
def
unitBall_without_origin
:
Set
(
Fin
3
→
ℝ
)
Equations
unitBall_without_origin
=
unitBall
\
{
origin
}
Instances For
source
def
fixpoint
(
y
:
r_3
)
(
p
:
GL
(
Fin
3
)
ℝ
)
:
Prop
Equations
fixpoint
y
p
=
(
rotate
p
y
=
y
)
Instances For
source
def
D
:
Set
↑
unitBall_without_origin
Equations
D
=
{
w
:
↑
unitBall_without_origin
|
∀ (
p
:
↥
G
),
fixpoint
↑
w
↑
p
}
Instances For
source
def
RotationAxis
(
p
:
GL
(
Fin
3
)
ℝ
)
:
Set
r_3
Equations
RotationAxis
p
=
{
w
:
r_3
|
fixpoint
w
p
}
Instances For