Documentation

Leroy.Further_Topology

Equations
Instances For
    Equations
    Instances For
      theorem Sublocale.Neighourhood.le {E : Type u} [e_frm : Order.Frame E] {a : Sublocale E} (x : Sublocale E) :
      x a.Neighbourhooda x
      theorem Sublocale.Neighbourhood.inf_closed {E : Type u} [e_frm : Order.Frame E] (x U : Sublocale E) :
      U x.NeighbourhoodVx.Neighbourhood, U V x.Neighbourhood

      Properties of Complement

      theorem sup_eq_top_iff_compl_le {E : Type u} [e_frm : Order.Frame E] (V : Open E) (x : Sublocale E) :

      Leroy Lemme 8

      theorem inf_eq_bot_iff_le_compl {E : Type u} [e_frm : Order.Frame E] (V : Open E) (x : Sublocale E) :
      theorem sup_compl_eq_top_iff {E : Type u} [e_frm : Order.Frame E] {x : Sublocale E} {u : Open E} :

      Leroy Lemme 8 bis

      theorem compl_sup_eq_inf_compl {E : Type u} [e_frm : Order.Frame E] {U V : Open E} :
      (U V).compl = U.compl V.compl

      Definitions

      def Sublocale.interior {E : Type u} [e_frm : Order.Frame E] (x : Sublocale E) :
      Equations
      Instances For
        theorem Open_interior_eq_id {E : Type u} [e_frm : Order.Frame E] (a : Open E) :
        def Open.interior {E : Type u} [e_frm : Order.Frame E] (x : Sublocale E) :
        Equations
        Instances For
          noncomputable def Closed.interior {E : Type u} [e_frm : Order.Frame E] (x : Closed E) :
          Equations
          Instances For
            def Sublocale.closure {E : Type u} [e_frm : Order.Frame E] (x : Sublocale E) :
            Equations
            Instances For
              def Open.closure {E : Type u} [e_frm : Order.Frame E] (x : Open E) :
              Equations
              Instances For
                noncomputable def Sublocale.rand {E : Type u} [e_frm : Order.Frame E] (x : Sublocale E) :
                Equations
                Instances For
                  def Sublocale.exterior {E : Type u} [e_frm : Order.Frame E] (x : Sublocale E) :
                  Equations
                  Instances For
                    def Open.exterior {E : Type u} [e_frm : Order.Frame E] (x : Open E) :
                    Equations
                    Instances For
                      def Closed.exterior {E : Type u} [e_frm : Order.Frame E] (x : Closed E) :
                      Equations
                      Instances For
                        theorem Open.inf_Exterior_eq_bot {E : Type u} [e_frm : Order.Frame E] (x : Open E) :
                        theorem Closure_compl_eq_exterior {E : Type u} [e_frm : Order.Frame E] (U : Open E) :
                        theorem Sublocale.compl_element_eq_compl_closure {E : Type u} [e_frm : Order.Frame E] (V : Open E) :
                        { element := V.element } = V.closure.compl
                        theorem Open.compl_element_eq_exterior {E : Type u} [e_frm : Order.Frame E] (U : Open E) :
                        { element := U.element } = U.exterior
                        theorem Open.le_exterior_exterior {E : Type u} [e_frm : Order.Frame E] (x : Open E) :
                        theorem compl_element_le_compl {E : Type u} [e_frm : Order.Frame E] (V : Open E) :
                        theorem Sublocale.eq_intersection_open_closed {E : Type u} [e_frm : Order.Frame E] (j : Sublocale E) :
                        j = ⨅ (a : E), { element := a }.toSublocale { element := j a }.toSublocale

                        Quelle: Johnstone Lemma C 1.1.17 (S. 485)