Equations
- u.Open_Neighbourhood = {v : Open X | u ≤ v.toSublocale}
Instances For
Equations
- u.Neighbourhood = {v : Sublocale X | ∃ w ∈ u.Open_Neighbourhood, w.toSublocale ≤ v}
Instances For
theorem
Sublocale.Neighourhood.le
{E : Type u}
[e_frm : Order.Frame E]
{a : Sublocale E}
(x : Sublocale E)
:
x ∈ a.Neighbourhood → a ≤ x
@[simp]
@[simp]
theorem
Sublocale.Open_Neighbourhood.inf_closed
{E : Type u}
[e_frm : Order.Frame E]
{x : Sublocale E}
(U : Open E)
:
U ∈ x.Open_Neighbourhood → ∀ V ∈ x.Open_Neighbourhood, U ⊓ V ∈ x.Open_Neighbourhood
theorem
Sublocale.Neighbourhood.inf_closed
{E : Type u}
[e_frm : Order.Frame E]
(x U : Sublocale E)
:
U ∈ x.Neighbourhood → ∀ V ∈ x.Neighbourhood, U ⊓ V ∈ x.Neighbourhood
Properties of Complement
theorem
sup_eq_top_iff_compl_le
{E : Type u}
[e_frm : Order.Frame E]
(V : Open E)
(x : Sublocale E)
:
Leroy Lemme 8
theorem
inf_eq_bot_iff_le_compl
{E : Type u}
[e_frm : Order.Frame E]
(V : Open E)
(x : Sublocale E)
:
Leroy Lemme 8 bis
Definitions
Equations
- Open.interior x = x
Instances For
Equations
- x.interior = x.toSublocale.interior
Instances For
Instances For
Equations
- x.rand = x.closure.toSublocale ⊓ complement x.interior
Instances For
Instances For
theorem
Sublocale.compl_element_eq_compl_closure
{E : Type u}
[e_frm : Order.Frame E]
(V : Open E)
:
theorem
Open_compl_le_Closed_compl
{E : Type u}
[e_frm : Order.Frame E]
(U : Open E)
(c : Closed E)
(h : c.toSublocale ≤ U.toSublocale)
:
theorem
Sublocale.eq_intersection_open_closed
{E : Type u}
[e_frm : Order.Frame E]
(j : Sublocale E)
:
Quelle: Johnstone Lemma C 1.1.17 (S. 485)