@[inline, reducible]
noncomputable abbrev
Acc.ndrecOn
{α : Sort u2}
{r : α → α → Prop}
{C : α → Sort u1}
{a : α}
(n : Acc r a)
(m : (x : α) → (∀ (y : α), r y x → Acc r y) → ((y : α) → r y x → C y) → C x)
:
C a
Equations
- Acc.ndrecOn n m = Acc.rec m n
Instances For
- intro: ∀ {α : Sort u} {r : α → α → Prop}, (∀ (a : α), Acc r a) → WellFounded r
Instances For
- rel : α → α → Prop
- wf : WellFounded WellFoundedRelation.rel
Instances
Equations
- ⋯ = ⋯
Instances For
theorem
WellFounded.recursion
{α : Sort u}
{r : α → α → Prop}
(hwf : WellFounded r)
{C : α → Sort v}
(a : α)
(h : (x : α) → ((y : α) → r y x → C y) → C x)
:
C a
theorem
WellFounded.induction
{α : Sort u}
{r : α → α → Prop}
(hwf : WellFounded r)
{C : α → Prop}
(a : α)
(h : ∀ (x : α), (∀ (y : α), r y x → C y) → C x)
:
C a
noncomputable def
WellFounded.fixF
{α : Sort u}
{r : α → α → Prop}
{C : α → Sort v}
(F : (x : α) → ((y : α) → r y x → C y) → C x)
(x : α)
(a : Acc r x)
:
C x
Equations
- WellFounded.fixF F x a = Acc.rec (fun (x₁ : α) (h : ∀ (y : α), r y x₁ → Acc r y) (ih : (y : α) → r y x₁ → C y) => F x₁ ih) a
Instances For
def
WellFounded.fixFEq
{α : Sort u}
{r : α → α → Prop}
{C : α → Sort v}
(F : (x : α) → ((y : α) → r y x → C y) → C x)
(x : α)
(acx : Acc r x)
:
WellFounded.fixF F x acx = F x fun (y : α) (p : r y x) => WellFounded.fixF F y ⋯
Equations
- ⋯ = ⋯
Instances For
noncomputable def
WellFounded.fix
{α : Sort u}
{C : α → Sort v}
{r : α → α → Prop}
(hwf : WellFounded r)
(F : (x : α) → ((y : α) → r y x → C y) → C x)
(x : α)
:
C x
Equations
- WellFounded.fix hwf F x = WellFounded.fixF F x ⋯
Instances For
theorem
WellFounded.fix_eq
{α : Sort u}
{C : α → Sort v}
{r : α → α → Prop}
(hwf : WellFounded r)
(F : (x : α) → ((y : α) → r y x → C y) → C x)
(x : α)
:
WellFounded.fix hwf F x = F x fun (y : α) (x : r y x) => WellFounded.fix hwf F y
Equations
- emptyWf = { rel := emptyRelation, wf := ⋯ }
Instances For
def
Subrelation.accessible
{α : Sort u}
{r : α → α → Prop}
{q : α → α → Prop}
{a : α}
(h₁ : Subrelation q r)
(ac : Acc r a)
:
Acc q a
Equations
- ⋯ = ⋯
Instances For
def
Subrelation.wf
{α : Sort u}
{r : α → α → Prop}
{q : α → α → Prop}
(h₁ : Subrelation q r)
(h₂ : WellFounded r)
:
Equations
- ⋯ = ⋯
Instances For
def
InvImage.wf
{α : Sort u}
{β : Sort v}
{r : β → β → Prop}
(f : α → β)
(h : WellFounded r)
:
WellFounded (InvImage r f)
Equations
- ⋯ = ⋯
Instances For
@[reducible]
Instances For
Equations
- ⋯ = ⋯
Instances For
Equations
- Nat.lt_wfRel = { rel := Nat.lt, wf := Nat.lt_wfRel.proof_1 }
Instances For
@[inline, reducible]
Instances For
Equations
- instWellFoundedRelation = sizeOfWFRel
- left: ∀ {α : Type u} {β : Type v} {ra : α → α → Prop} {rb : β → β → Prop} {a₁ : α} (b₁ : β) {a₂ : α} (b₂ : β), ra a₁ a₂ → Prod.Lex ra rb (a₁, b₁) (a₂, b₂)
- right: ∀ {α : Type u} {β : Type v} {ra : α → α → Prop} {rb : β → β → Prop} (a : α) {b₁ b₂ : β}, rb b₁ b₂ → Prod.Lex ra rb (a, b₁) (a, b₂)
Instances For
instance
Prod.Lex.instDecidableRelProdLex
{α : Type u}
{β : Type v}
[αeqDec : DecidableEq α]
{r : α → α → Prop}
[rDec : DecidableRel r]
{s : β → β → Prop}
[sDec : DecidableRel s]
:
DecidableRel (Prod.Lex r s)
Equations
- One or more equations did not get rendered due to their size.
@[reducible]
def
Prod.lex
{α : Type u}
{β : Type v}
(ha : WellFoundedRelation α)
(hb : WellFoundedRelation β)
:
WellFoundedRelation (α × β)
Equations
Instances For
instance
Prod.instWellFoundedRelationProd
{α : Type u}
{β : Type v}
[ha : WellFoundedRelation α]
[hb : WellFoundedRelation β]
:
WellFoundedRelation (α × β)
def
Prod.rprod
{α : Type u}
{β : Type v}
(ha : WellFoundedRelation α)
(hb : WellFoundedRelation β)
:
WellFoundedRelation (α × β)
Equations
- Prod.rprod ha hb = { rel := Prod.RProd WellFoundedRelation.rel WellFoundedRelation.rel, wf := ⋯ }
Instances For
inductive
PSigma.Lex
{α : Sort u}
{β : α → Sort v}
(r : α → α → Prop)
(s : (a : α) → β a → β a → Prop)
:
- left: ∀ {α : Sort u} {β : α → Sort v} {r : α → α → Prop} {s : (a : α) → β a → β a → Prop} {a₁ : α} (b₁ : β a₁) {a₂ : α} (b₂ : β a₂), r a₁ a₂ → PSigma.Lex r s { fst := a₁, snd := b₁ } { fst := a₂, snd := b₂ }
- right: ∀ {α : Sort u} {β : α → Sort v} {r : α → α → Prop} {s : (a : α) → β a → β a → Prop} (a : α) {b₁ b₂ : β a}, s a b₁ b₂ → PSigma.Lex r s { fst := a, snd := b₁ } { fst := a, snd := b₂ }
Instances For
def
PSigma.lexAccessible
{α : Sort u}
{β : α → Sort v}
{r : α → α → Prop}
{s : (a : α) → β a → β a → Prop}
{a : α}
(aca : Acc r a)
(acb : ∀ (a : α), WellFounded (s a))
(b : β a)
:
Acc (PSigma.Lex r s) { fst := a, snd := b }
Equations
- ⋯ = ⋯
Instances For
@[reducible]
def
PSigma.lex
{α : Sort u}
{β : α → Sort v}
(ha : WellFoundedRelation α)
(hb : (a : α) → WellFoundedRelation (β a))
:
Equations
- PSigma.lex ha hb = { rel := PSigma.Lex WellFoundedRelation.rel fun (a : α) => WellFoundedRelation.rel, wf := ⋯ }
Instances For
instance
PSigma.instWellFoundedRelationPSigma
{α : Sort u}
{β : α → Sort v}
[ha : WellFoundedRelation α]
[hb : (a : α) → WellFoundedRelation (β a)]
:
Equations
- PSigma.instWellFoundedRelationPSigma = PSigma.lex ha hb
def
PSigma.lexNdep
{α : Sort u}
{β : Sort v}
(r : α → α → Prop)
(s : β → β → Prop)
:
(_ : α) ×' β → (_ : α) ×' β → Prop
Equations
- PSigma.lexNdep r s = PSigma.Lex r fun (x : α) => s
Instances For
def
PSigma.lexNdepWf
{α : Sort u}
{β : Sort v}
{r : α → α → Prop}
{s : β → β → Prop}
(ha : WellFounded r)
(hb : WellFounded s)
:
WellFounded (PSigma.lexNdep r s)
Equations
- ⋯ = ⋯
Instances For
inductive
PSigma.RevLex
{α : Sort u}
{β : Sort v}
(r : α → α → Prop)
(s : β → β → Prop)
:
(_ : α) ×' β → (_ : α) ×' β → Prop
- left: ∀ {α : Sort u} {β : Sort v} {r : α → α → Prop} {s : β → β → Prop} {a₁ a₂ : α} (b : β), r a₁ a₂ → PSigma.RevLex r s { fst := a₁, snd := b } { fst := a₂, snd := b }
- right: ∀ {α : Sort u} {β : Sort v} {r : α → α → Prop} {s : β → β → Prop} (a₁ : α) {b₁ : β} (a₂ : α) {b₂ : β}, s b₁ b₂ → PSigma.RevLex r s { fst := a₁, snd := b₁ } { fst := a₂, snd := b₂ }
Instances For
def
PSigma.revLex
{α : Sort u}
{β : Sort v}
{r : α → α → Prop}
{s : β → β → Prop}
(ha : WellFounded r)
(hb : WellFounded s)
:
WellFounded (PSigma.RevLex r s)
Equations
- ⋯ = ⋯
Instances For
def
PSigma.SkipLeft
(α : Type u)
{β : Type v}
(s : β → β → Prop)
:
(_ : α) ×' β → (_ : α) ×' β → Prop
Equations
- PSigma.SkipLeft α s = PSigma.RevLex emptyRelation s
Instances For
def
PSigma.skipLeft
(α : Type u)
{β : Type v}
(hb : WellFoundedRelation β)
:
WellFoundedRelation ((_ : α) ×' β)
Equations
- PSigma.skipLeft α hb = { rel := PSigma.SkipLeft α WellFoundedRelation.rel, wf := ⋯ }
Instances For
def
PSigma.mkSkipLeft
{α : Type u}
{β : Type v}
{b₁ : β}
{b₂ : β}
{s : β → β → Prop}
(a₁ : α)
(a₂ : α)
(h : s b₁ b₂)
:
PSigma.SkipLeft α s { fst := a₁, snd := b₁ } { fst := a₂, snd := b₂ }
Equations
- ⋯ = ⋯