Documentation

Mathlib.Data.Finsupp.Multiset

Equivalence between Multiset and -valued finitely supported functions #

This defines Finsupp.toMultiset the equivalence between α →₀ ℕ and Multiset α, along with Multiset.toFinsupp the reverse equivalence and Finsupp.orderIsoMultiset the equivalence promoted to an order isomorphism.

def Finsupp.toMultiset {α : Type u_1} :

Given f : α →₀ ℕ, f.toMultiset is the multiset with multiplicities given by the values of f on the elements of α. We define this function as an AddMonoidHom.

Under the additional assumption of [DecidableEq α], this is available as Multiset.toFinsupp : Multiset α ≃+ (α →₀ ℕ); the two declarations are separate as this assumption is only needed for one direction.

Equations
  • Finsupp.toMultiset = { toZeroHom := { toFun := fun (f : α →₀ ) => Finsupp.sum f fun (a : α) (n : ) => n {a}, map_zero' := }, map_add' := }
theorem Finsupp.toMultiset_zero {α : Type u_1} :
Finsupp.toMultiset 0 = 0
theorem Finsupp.toMultiset_add {α : Type u_1} (m : α →₀ ) (n : α →₀ ) :
Finsupp.toMultiset (m + n) = Finsupp.toMultiset m + Finsupp.toMultiset n
theorem Finsupp.toMultiset_apply {α : Type u_1} (f : α →₀ ) :
Finsupp.toMultiset f = Finsupp.sum f fun (a : α) (n : ) => n {a}
@[simp]
theorem Finsupp.toMultiset_single {α : Type u_1} (a : α) (n : ) :
Finsupp.toMultiset (Finsupp.single a n) = n {a}
theorem Finsupp.toMultiset_sum {α : Type u_1} {ι : Type u_3} {f : ια →₀ } (s : Finset ι) :
Finsupp.toMultiset (Finset.sum s fun (i : ι) => f i) = Finset.sum s fun (i : ι) => Finsupp.toMultiset (f i)
theorem Finsupp.toMultiset_sum_single {ι : Type u_3} (s : Finset ι) (n : ) :
Finsupp.toMultiset (Finset.sum s fun (i : ι) => Finsupp.single i n) = n s.val
@[simp]
theorem Finsupp.card_toMultiset {α : Type u_1} (f : α →₀ ) :
Multiset.card (Finsupp.toMultiset f) = Finsupp.sum f fun (x : α) => id
theorem Finsupp.toMultiset_map {α : Type u_1} {β : Type u_2} (f : α →₀ ) (g : αβ) :
Multiset.map g (Finsupp.toMultiset f) = Finsupp.toMultiset (Finsupp.mapDomain g f)
@[simp]
theorem Finsupp.sum_toMultiset {α : Type u_1} [AddCommMonoid α] (f : α →₀ ) :
Multiset.sum (Finsupp.toMultiset f) = Finsupp.sum f fun (a : α) (n : ) => n a
@[simp]
theorem Finsupp.prod_toMultiset {α : Type u_1} [CommMonoid α] (f : α →₀ ) :
Multiset.prod (Finsupp.toMultiset f) = Finsupp.prod f fun (a : α) (n : ) => a ^ n
@[simp]
theorem Finsupp.toFinset_toMultiset {α : Type u_1} [DecidableEq α] (f : α →₀ ) :
Multiset.toFinset (Finsupp.toMultiset f) = f.support
@[simp]
theorem Finsupp.count_toMultiset {α : Type u_1} [DecidableEq α] (f : α →₀ ) (a : α) :
Multiset.count a (Finsupp.toMultiset f) = f a
theorem Finsupp.toMultiset_sup {α : Type u_1} [DecidableEq α] (f : α →₀ ) (g : α →₀ ) :
Finsupp.toMultiset (f g) = Finsupp.toMultiset f Finsupp.toMultiset g
theorem Finsupp.toMultiset_inf {α : Type u_1} [DecidableEq α] (f : α →₀ ) (g : α →₀ ) :
Finsupp.toMultiset (f g) = Finsupp.toMultiset f Finsupp.toMultiset g
@[simp]
theorem Finsupp.mem_toMultiset {α : Type u_1} (f : α →₀ ) (i : α) :
i Finsupp.toMultiset f i f.support
@[simp]
theorem Multiset.toFinsupp_symm_apply {α : Type u_1} [DecidableEq α] (f : α →₀ ) :
(AddEquiv.symm Multiset.toFinsupp) f = Finsupp.toMultiset f

Given a multiset s, s.toFinsupp returns the finitely supported function on given by the multiplicities of the elements of s.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Multiset.toFinsupp_support {α : Type u_1} [DecidableEq α] (s : Multiset α) :
(Multiset.toFinsupp s).support = Multiset.toFinset s
@[simp]
theorem Multiset.toFinsupp_apply {α : Type u_1} [DecidableEq α] (s : Multiset α) (a : α) :
(Multiset.toFinsupp s) a = Multiset.count a s
theorem Multiset.toFinsupp_zero {α : Type u_1} [DecidableEq α] :
Multiset.toFinsupp 0 = 0
theorem Multiset.toFinsupp_add {α : Type u_1} [DecidableEq α] (s : Multiset α) (t : Multiset α) :
Multiset.toFinsupp (s + t) = Multiset.toFinsupp s + Multiset.toFinsupp t
@[simp]
theorem Multiset.toFinsupp_singleton {α : Type u_1} [DecidableEq α] (a : α) :
Multiset.toFinsupp {a} = Finsupp.single a 1
@[simp]
theorem Multiset.toFinsupp_toMultiset {α : Type u_1} [DecidableEq α] (s : Multiset α) :
Finsupp.toMultiset (Multiset.toFinsupp s) = s
theorem Multiset.toFinsupp_eq_iff {α : Type u_1} [DecidableEq α] {s : Multiset α} {f : α →₀ } :
Multiset.toFinsupp s = f s = Finsupp.toMultiset f
theorem Multiset.toFinsupp_union {α : Type u_1} [DecidableEq α] (s : Multiset α) (t : Multiset α) :
Multiset.toFinsupp (s t) = Multiset.toFinsupp s Multiset.toFinsupp t
theorem Multiset.toFinsupp_inter {α : Type u_1} [DecidableEq α] (s : Multiset α) (t : Multiset α) :
Multiset.toFinsupp (s t) = Multiset.toFinsupp s Multiset.toFinsupp t
@[simp]
theorem Multiset.toFinsupp_sum_eq {α : Type u_1} [DecidableEq α] (s : Multiset α) :
(Finsupp.sum (Multiset.toFinsupp s) fun (x : α) => id) = Multiset.card s
@[simp]
theorem Finsupp.toMultiset_toFinsupp {α : Type u_1} [DecidableEq α] (f : α →₀ ) :
Multiset.toFinsupp (Finsupp.toMultiset f) = f
theorem Finsupp.toMultiset_eq_iff {α : Type u_1} [DecidableEq α] {f : α →₀ } {s : Multiset α} :
Finsupp.toMultiset f = s f = Multiset.toFinsupp s

As an order isomorphism #

Finsupp.toMultiset as an order isomorphism.

Equations
  • Finsupp.orderIsoMultiset = { toEquiv := (AddEquiv.symm Multiset.toFinsupp).toEquiv, map_rel_iff' := }
@[simp]
theorem Finsupp.coe_orderIsoMultiset {ι : Type u_3} [DecidableEq ι] :
Finsupp.orderIsoMultiset = Finsupp.toMultiset
@[simp]
theorem Finsupp.coe_orderIsoMultiset_symm {ι : Type u_3} [DecidableEq ι] :
(OrderIso.symm Finsupp.orderIsoMultiset) = Multiset.toFinsupp
theorem Finsupp.toMultiset_strictMono {ι : Type u_3} :
StrictMono Finsupp.toMultiset
theorem Finsupp.sum_id_lt_of_lt {ι : Type u_3} (m : ι →₀ ) (n : ι →₀ ) (h : m < n) :
(Finsupp.sum m fun (x : ι) => id) < Finsupp.sum n fun (x : ι) => id
theorem Finsupp.lt_wf (ι : Type u_3) :

The order on ι →₀ ℕ is well-founded.

theorem Multiset.toFinsupp_strictMono {ι : Type u_3} [DecidableEq ι] :
StrictMono Multiset.toFinsupp
def Sym.equivNatSum (α : Type u_1) [DecidableEq α] (n : ) :
Sym α n { P : α →₀ // (Finsupp.sum P fun (x : α) => id) = n }

The nth symmetric power of a type α is naturally equivalent to the subtype of finitely-supported maps α →₀ ℕ with total mass n.

See also Sym.equivNatSumOfFintype when α is finite.

Equations
@[simp]
theorem Sym.coe_equivNatSum_apply_apply (α : Type u_1) [DecidableEq α] (n : ) (s : Sym α n) (a : α) :
((Sym.equivNatSum α n) s) a = Multiset.count a s
@[simp]
theorem Sym.coe_equivNatSum_symm_apply (α : Type u_1) [DecidableEq α] (n : ) (P : { P : α →₀ // (Finsupp.sum P fun (x : α) => id) = n }) :
((Sym.equivNatSum α n).symm P) = Finsupp.toMultiset P
noncomputable def Sym.equivNatSumOfFintype (α : Type u_1) [DecidableEq α] (n : ) [Fintype α] :
Sym α n { P : α // (Finset.sum Finset.univ fun (i : α) => P i) = n }

The nth symmetric power of a finite type α is naturally equivalent to the subtype of maps α → ℕ with total mass n.

See also Sym.equivNatSum when α is not necessarily finite.

Equations
@[simp]
theorem Sym.coe_equivNatSumOfFintype_apply_apply (α : Type u_1) [DecidableEq α] (n : ) [Fintype α] (s : Sym α n) (a : α) :
@[simp]
theorem Sym.coe_equivNatSumOfFintype_symm_apply (α : Type u_1) [DecidableEq α] (n : ) [Fintype α] (P : { P : α // (Finset.sum Finset.univ fun (i : α) => P i) = n }) :
((Sym.equivNatSumOfFintype α n).symm P) = Finset.sum Finset.univ fun (a : α) => P a {a}